Skip to main content

Part of the book series: Comprehensive Healthcare Simulation ((CHS))

Abstract

The skill of the surgeon directly impacts patient outcomes (Birkmeyer et al. N Engl J Med 369:1434–1442, 2013). This is intuitive, especially for a highly technical profession, yet our education and maintenance of certification (MOC) processes rarely incorporate standard objective performance assessment. In the education realm, surgical trainee advancement relies heavily on the consolidation of subjective faculty feedback. The Accredited Council of Graduate Medical Education (ACGME) and the Residency Review Committees (RRCs) for individual specialty-specific programs utilize the ACGME Milestones including assessment of six core competencies which encompass technical, cognitive, and communication skills yet remain relatively subjective measures of performance (Nasca et al. New Engl J 366:1051–1056, 2012). MOC algorithms for practicing surgeons still rely heavily on cognitive multiple choice tests and self-paced continuing medical education (CME) endeavors and have not yet embraced procedural skills assessment for concern over logistics and standardization.

In this chapter we will discuss the objective methods available for performance assessment of learning and practicing surgeons. We will first focus on the need for objective skills assessment in our profession followed by some definitions and decomposition of surgical skill. We will then discuss how objective skills metrics are being used today and where we should apply objective assessment methods going forward. We will close with the methods for accomplishing objective assessments. This chapter should provide any educator, instructor, graduate medical education administrator, or professional board member with knowledge on opportunities for objective performance assessment of surgical clinicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Batalden P, Leach D, Swing S, Dreyfus H, Dreyfus S. General competencies and accreditation in graduate medical education. Health Aff. 2002;21(5):103.

    Article  Google Scholar 

  2. Liu A, Tendick F, Cleary K, Kaufmann C. A survey of surgical simulation: applications, technology, and education. Presence Teleoperators Virtual Environ. 2003;12(6):599–614.

    Article  Google Scholar 

  3. Satava RM, Cuschieri A, Hamdorf J. Metrics for objective assessment. Surg Endosc. 2003;17(2):220–6.

    Article  CAS  PubMed  Google Scholar 

  4. Darzi A, Smith S, Taffinder N. Assessing operative skill. BMJ. 1999;318(7188):887–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Satava RM. The need for metrics in surgical education. Surg Endosc. 1999;13(11):1082.

    Article  CAS  PubMed  Google Scholar 

  6. Gallagher AG, Satava RM. Virtual reality as a metric for the assessment of laparoscopic psychomotor skills. Surg Endosc. 2002;16(12):1746–52.

    Article  CAS  PubMed  Google Scholar 

  7. Nasca T, Philibert I, Brigham T. The next GME accreditation system—rationale and benefits. New Engl. J. 2012;366(11):1051–6.

    Article  CAS  Google Scholar 

  8. Stanley LE Hamstra J, Yamazaki K, Holmboe ES. Milestones: Annual Report. Accreditation Council for Graduate Medical Education (ACGME), Chicago; 2016.

    Google Scholar 

  9. DeMaria EJ, El Chaar M, Rogers AM, Eisenberg D, Kallies KJ, Kothari SN. American Society for Metabolic and Bariatric Surgery position statement on accreditation of bariatric surgery centers endorsed by the Society of American Gastrointestinal and Endoscopic Surgeons. Surg Obes Relat Dis. 2016;12(5):946–54.

    Google Scholar 

  10. Tzafestas SG. Medical roboethics. In: Roboethics. Switzerland: Springer; 2016. p. 81–92.

    Google Scholar 

  11. Long C, Tsay EL, Jacobo SA, Popat R, Singh K, Chang RT. Factors associated with patient press ganey satisfaction scores for ophthalmology patients. Ophthalmology. Switzerland: Springer; 2016;123(2):242–7.

    Google Scholar 

  12. Buyske J. Forks in the road: the assessment of surgeons from the American Board of Surgery Perspective. Surg Clin North Am. 2016;96(1):139–46.

    Article  PubMed  Google Scholar 

  13. Bhatt NR, Morris M, O’Neil A, Gillis A, Ridgway PF. When should surgeons retire? Br J Surg. 2016;103(1):35–42.

    Article  CAS  PubMed  Google Scholar 

  14. Deering SH, Rush RM, Lesperance RN, Roth BJ. Perceived effects of deployments on surgeon and physician skills in the US Army medical department. Am J Surg. 2011;201(5):666–72.

    Article  PubMed  Google Scholar 

  15. Lendvay TS, et al. Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study. J Am Coll Surg. 2013;216(6):1181–92.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Levinson W, Roter DL, Mullooly JP, Dull VT, Frankel RM. Physician-patient communication: the relationship with malpractice claims among primary care physicians and surgeons. JAMA. 1997;277(7):553–9.

    Article  CAS  PubMed  Google Scholar 

  17. Birkmeyer JD, et al. Surgical skill and complication rates after bariatric surgery. N Engl J Med. 2013;369(15):1434–42.

    Article  CAS  PubMed  Google Scholar 

  18. Miller GE. The assessment of clinical skills/competence/performance. Acad Med J Assoc Am Med Coll. 1990;65(9 Suppl):S63.

    Article  CAS  Google Scholar 

  19. Peters J, et al. Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. Surgery. 2004;135(1):21–7.

    Article  PubMed  Google Scholar 

  20. Derossis MD, et al. Development of a model for training and evaluation of laparoscopic skills. Am J Surg. 1998;175(6):482–7.

    Article  CAS  PubMed  Google Scholar 

  21. Derossis AM, Bothwell J, Sigman HH, Fried GM. The effect of practice on performance in a laparoscopic simulator. Surg Endosc. 1998;12(9):1117–20.

    Article  CAS  PubMed  Google Scholar 

  22. Gallagher AG, et al. Virtual reality simulation for the operating room: proficiency-based training as a paradigm shift in surgical skills training. Ann Surg. 2005;241(2):364.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schmidt RA, Lee TD. Motor control and learning: a behavioral emphasis. Champaign: Human Kinetics Publishers; Switzerland: Springer; 2005.

    Google Scholar 

  24. Robles-De-La-Torre G. The importance of the sense of touch in virtual and real environments. Multimedia, IEEE. 2006;13(3):24–30.

    Article  Google Scholar 

  25. Cole J. Pride and a Daily Marathon. A Bradford Book. MIT press. Cambridge, MA 1995.

    Google Scholar 

  26. Craig JC, Rollman GB. Somesthesis. Annu Rev Psychol. 1999;50(1):305–31.

    Article  CAS  PubMed  Google Scholar 

  27. Cole J, Paillard J. Living without touch and peripheral information about body position and movement: studies with deafferented subjects. In:The body and the self. Cambridge, MA: The MIT Press. p. 245–66.

    Google Scholar 

  28. Paillard J. Body schema and body image: A double dissociation in deafferented patients. Mot Control Today Tomorrow. 1999;48(3):197–214.

    Google Scholar 

  29. Nise NS. Control systems engineering, (With CD). Hoboken:Wiley; Switzerland: Springer; 2007.

    Google Scholar 

  30. Eydelman MB, Nguyen T, Green JA. The US Food and Drug Administration’s new regulatory toolkit to bring medical device innovation back to the United States. JAMA Ophthalmol. 2016;134(4):353–4.

    Article  PubMed  Google Scholar 

  31. Martin JA, et al. Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg. 1997;84(2):273–8.

    Article  CAS  PubMed  Google Scholar 

  32. Reznick R, Regehr G, MacRae H, Martin J, McCulloch W. Testing technical skill via an innovative ‘bench station’ examination. Am J Surg. 1997;173(3):226–30.

    Article  CAS  PubMed  Google Scholar 

  33. Vassiliou MC, et al. A global assessment tool for evaluation of intraoperative laparoscopic skills. Am J Surg. 2005;190:107–13.

    Article  PubMed  Google Scholar 

  34. Goh AC, Goldfarb DW, Sander JC, Miles BJ, Dunkin BJ. Global evaluative assessment of robotic skills: validation of a clinical assessment tool to measure robotic surgical skills. J Urol. 2012;187(1):247–52.

    Article  PubMed  Google Scholar 

  35. Chen C, et al. Crowd-sourced assessment of technical skills: A novel method to evaluate surgical performance. J Surg Res. 2014;187(1):65–71.

    Article  PubMed  Google Scholar 

  36. Holst D, et al. Crowd-sourced assessment of technical skills: Differentiating animate surgical skill through the wisdom of crowds. J. Endourol. 2015;29(10):1183–8.

    Article  PubMed  Google Scholar 

  37. Aghdasi N, Bly R, White LW, Hannaford B, Moe K, Lendvay TS. Crowd-sourced assessment of surgical skills in cricothyrotomy procedure. J Surg Res. 2015;196(2):302–6.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Holst D, et al. Crowd-sourced assessment of technical skills: An adjunct to urology resident surgical simulation training. J Endourol. 2015;29(5):604–9.

    Article  PubMed  Google Scholar 

  39. Kirsch S, Comstock B, Warren J, Schaffhausen C, Kowalewski T, Lendvay T. Crowd Sourced Assessment of Technical Skills (CSATS): A Scalable Assessment Tool for the Nursing Workforce. J Invest Med. 2015;63(1):92.

    Google Scholar 

  40. Lendvay TS, White L, Kowalewski T. Crowdsourcing to assess surgical skill. JAMA Surg. 2015;150(11):1086–7.

    Article  PubMed  Google Scholar 

  41. Deal SB, et al. Crowd-sourced assessment of technical skills: an opportunity for improvement in the assessment of laparoscopic surgical skills. Am J Surg. 2016;211(2):398–404.

    Article  PubMed  Google Scholar 

  42. Chen SP, et al. Optical biopsy of bladder Cancer using crowd-sourced assessment. JAMA Surg. 2016;151(1):90–3.

    Article  PubMed  Google Scholar 

  43. Kowalewski TM, et al. Crowd-Sourced Assessment of Technical Skills for Validation of Basic Laparoscopic Urologic Skills Tasks. J Urol. 2016;195(6):1859–65.

    Article  PubMed  Google Scholar 

  44. Ghani KR, et al. Measuring to improve: peer and crowd-sourced assessments of technical skill with robot-assisted radical prostatectomy. Eur Urol. 2016;69(4):547–50.

    Article  PubMed  Google Scholar 

  45. Satava RM. Virtual reality surgical simulator. The first steps. Surg Endosc. 1993;7(3):203.

    Article  CAS  PubMed  Google Scholar 

  46. Healy GB. The college should be instrumental in adapting simulators to education. Bull Am Coll Surg. 2002;87(11):10.

    PubMed  Google Scholar 

  47. Champion HR, Gallagher AG. Surgical simulation – a ‘good idea whose time has come’. Br J Surg. 2003;90(7):767–8.

    Article  CAS  PubMed  Google Scholar 

  48. Gallagher AG, Richie K, McClure N, McGuigan J. Objective psychomotor skills assessment of experienced, junior, and novice laparoscopists with virtual reality. World J Surg. 2001;25(11):1478–83.

    Article  CAS  PubMed  Google Scholar 

  49. Watterson JD, Beiko DT, Kuan JK, Denstedt JD. A randomized prospective blinded study validating Acquisition of Ureteroscopy skills using a computer based virtual reality Endourological simulator. J Urol. 2002;168(5):1928–32.

    Article  PubMed  Google Scholar 

  50. Seymour NE, et al. Virtual reality training improves operating room performance: results of a randomized, double-blinded study. Ann Surg. 2002;236(4):458.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sutherland LM, et al. Surgical simulation: a systematic review. Ann Surg. 2006;243(3):291.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Fraser SA, Feldman LS, Stanbridge D, Fried GM. Characterizing the learning curve for a basic laparoscopic drill. Surg Endosc. 2005;19(12):1572–8.

    Article  CAS  PubMed  Google Scholar 

  53. Scott DJ, Ritter EM, Tesfay ST, Pimentel EA, Nagji A, Fried GM. Certification pass rate of 100% for fundamentals of laparoscopic surgery skills after proficiency-based training. Surg Endosc. 2008;22(8):1887–93.

    Article  PubMed  Google Scholar 

  54. Fraser SA, Klassen DR, Feldman LS, Ghitulescu GA, Stanbridge D, Fried GM. Evaluating laparoscopic skills: setting the pass/fail score for the MISTELS system. Surg Endosc. 2003;17(6):964–7.

    Article  CAS  PubMed  Google Scholar 

  55. Keyser EJ, Derossis AM, Antoniuk M, Sigman HH, Fried GM. A simplified simulator for the training and evaluation of laparoscopic skills. Surg Endosc. 2000;14(2):149–53.

    Article  CAS  PubMed  Google Scholar 

  56. Derossis AM, Antoniuk M, Fried GM. Evaluation of laparoscopic skills: a 2-year follow-up during residency training. Can J Surg. 1999;42(4):293.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Feldman LS, Hagarty SE, Ghitulescu G, Stanbridge D, Fried GM. Relationship between objective assessment of technical skills and subjective in-training evaluations in surgical residents* 1. J Am Coll Surg. 2004;198(1):105–10.

    Article  PubMed  Google Scholar 

  58. Feldman LS, Sherman V, Fried GM. Using simulators to assess laparoscopic competence: ready for widespread use? Surgery. 2004;135(1):28.

    Article  PubMed  Google Scholar 

  59. Fried GM, Derossis AM, Bothwell J, Sigman HH. Comparison of laparoscopic performance in vivo with performance measured in a laparoscopic simulator. Surg Endosc. 1999;13(11):1077–81.

    Article  CAS  PubMed  Google Scholar 

  60. Stefanidis D, Sierra R, Korndorffer JR, others. Intensive continuing medical education course training on simulators results in proficiency for laparoscopic suturing. Am J Surg. 2006;191(1):23–7.

    Article  PubMed  Google Scholar 

  61. Feldman LS, Cao J, Andalib A, Fraser S, Fried GM. A method to characterize the learning curve for performance of a fundamental laparoscopic simulator task: defining. Surgery. 2009;146(2):381–6.

    Article  PubMed  Google Scholar 

  62. Dauster B, et al. Validity of the MISTELS simulator for laparoscopy training in urology. J Endourol. 2005;19(5):541–5.

    Article  PubMed  Google Scholar 

  63. Swanstrom LL, Fried GM, Hoffman KI, Soper NJ. Beta test results of a new system assessing competence in laparoscopic surgery. J Am Coll Surg. 2006;202(1):62–9.

    Article  PubMed  Google Scholar 

  64. Stefanidis D, Korndorffer JR, others. Proficiency maintenance: impact of ongoing simulator training on laparoscopic skill retention. J Am Coll Surg. 2006;202(4):599–603.

    Article  PubMed  Google Scholar 

  65. Fried GM, et al. Proving the value of simulation in laparoscopic surgery. Ann Surg. 2004;240(3):518.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Korndorffer JR, others. Simulator training for laparoscopic suturing using performance goals translates to the operating room. J Am Coll Surg. 2005;201(1):23–9.

    Article  PubMed  Google Scholar 

  67. Ritter EM, Scott DJ. Design of a proficiency-based skills training curriculum for the fundamentals of laparoscopic surgery. Surg Innov. 2007;14(2):107.

    Article  PubMed  Google Scholar 

  68. Castellvi AO, Hollett LA, Minhajuddin A, Hogg DC, Tesfay ST, Scott DJ. Maintaining proficiency after fundamentals of laparoscopic surgery training: a 1-year analysis of skill retention for surgery residents. Surgery. 2009;146(2):387–93.

    Article  PubMed  Google Scholar 

  69. Sethi AS, Peine WJ, Mohammadi Y, Sundaram CP. Validation of a novel virtual reality robotic simulator. J Endourol. 2009;23(3):503–8.

    Article  PubMed  Google Scholar 

  70. Kenney PA, Wszolek MF, Gould JJ, Libertino JA, Moinzadeh A. Face, content, and construct validity of dV-trainer, a novel virtual reality simulator for robotic surgery. Urology. 2009;73(6):1288–92.

    Article  PubMed  Google Scholar 

  71. Lendvay TS, Casale P, Sweet R, Peters C. Initial validation of a virtual-reality robotic simulator. J Robot Surg. 2008;2(3):145–9.

    Article  PubMed  Google Scholar 

  72. Rosen J, MacFarlane M, Richards C, Hannaford B, Sinanan M. Surgeon-tool force/torque signatures evaluation of surgical skills in minimally invasive surgery. Med meets virtual reality-the Converg Phys Informational Technol options a New Era Healthc. 1999;62:290–6.

    CAS  Google Scholar 

  73. Reiley CE, Lin HC, Yuh DD, Hager GD. A review of methods for objective surgical skill evaluation. Surg Endosc. 2011;25(2):356–66.

    Google Scholar 

  74. Chmarra MK, Grimbergen CA, Dankelman J. Systems for tracking minimally invasive surgical instruments. Minim Invasive Ther Allied Technol. 2007;16(6):328–40.

    Article  CAS  PubMed  Google Scholar 

  75. Zia A, Sharma Y, Bettadapura V, Sarin EL, Clements MA, Essa I. Automated assessment of surgical skills using frequency analysis. In: International conference on medical image computing and computer-assisted intervention. Munich, Germany, 5–9 October 2015. p. 430–8.

    Google Scholar 

  76. Ahmidi N, Tao L, Sefati S, Gao Y, Lea C, Haro BB, Zappella L, Khudanpur S, Vidal R, Hager GD. A dataset and benchmarks for segmentation and recognition of gestures in robotic surgery. IEEE Trans Biomed Eng. 2017;64(9):2025–41.

    Google Scholar 

  77. Rabiner LR. A tutorial on hidden Markov models and selected applications in speech recognition. Proc IEEE. 1989;77(2):257–86.

    Article  Google Scholar 

  78. Inamura T, Tanie H, Nakamura Y. From stochastic motion generation and recognition to geometric symbol development and manipulation. In: International conference on humanoid robots. Karlsruhe Munich, Germany. 2003.

    Google Scholar 

  79. Itabashi K, Hirana K, Suzuki T, Okuma S, Fujiwara F. Modelling and realization of the peg-in-hole task based on hidden Markov model. In: Robotics and Automation, 1998. Proceedings. 1998 IEEE International Conference on, 1998, vol. 2. Trieste, Italy. p. 1142–7.

    Google Scholar 

  80. Yang J, Xu Y, Chen CS. Human action learning via hidden Markov model. Syst Man Cybern Part A Syst Humans, IEEE Trans. 1997;27(1):34–44.

    Article  Google Scholar 

  81. Hannaford B, Lee P. Hidden Markov model of force torque information in Telemanipulation. Int J Robot Res. 1991;10(5):528–39.

    Article  Google Scholar 

  82. Inamura T, Toshima I, Tanie H, Nakamura Y. Embodied symbol emergence based on mimesis theory. Int J Robot Res. 2004;23(4–5):363–77.

    Article  Google Scholar 

  83. Kowalewski TM, Rosen J, Chang L, Sinanan M, Hannaford B. Optimization of a vector quantization codebook for objective evaluation of surgical skill. In: Proceeding of medicine meets virtual reality 12. Newport, CA. 2004. p. 174–9.

    Google Scholar 

  84. Rosen J, Chang L, Brown JD, Hannaford B, Sinanan M, Satava R. Minimally invasive surgery task decomposition – etymology of Endoscopic Suturing. Stud Heal Technol Informatics Med Meets Virtual Real. 2003;94:295–301.

    Google Scholar 

  85. Rosen J, Hannaford B, Richards CG, Sinanan MN. Markov modeling of minimally invasive surgery based on tool/tissue interaction and force/torque signatures for evaluating surgical skills. Biomed Eng IEEE Trans. 2001;48(5):579–91.

    Article  CAS  Google Scholar 

  86. Rosen J, Solazzo M, Hannaford B, Sinanan M. Task decomposition of laparoscopic surgery for objective evaluation of surgical residents’ learning curve using hidden Markov model. Comput Aided Surg. 2002;7(1):49–61.

    Article  PubMed  Google Scholar 

  87. Rosen J, Brown JD, Chang L, Barreca M, Sinanan M, Hannaford B. The {BlueDRAGON}-a system for measuring the kinematics and dynamics of minimally invasive surgical tools in-vivo. Proceedings 2002 IEEE International Conference on Robotics and Automation, vol. 2. Washington, DC. p. 1876–81.

    Google Scholar 

  88. Lum M. Kinematic optimization of a 2-{DOF} spherical mechanism for a minimally invasive surgical robot. Masters thesis. University of Washington, Department of Electrical Engineering; Switzerland: Springer; 2004. Accessible at: http://astro.ee.washington.edu/BRL_Pubs/Pdfs/Th029.pdf.

  89. Rosen J, Lum M, Trimble D, Hannaford B, Sinanan M. Spherical mechanism analysis of a surgical robot for minimally invasive surgery – analytical and experimental approaches. Stud Heal Technol Informatics Med Meets Virtual Reality. Jan. 2005;111:422–8.

    Google Scholar 

  90. Gunther S, Rosen J, Hannaford B, Sinanan M. The {R}ed {DRAGON}: a multi-modality system for simulation and training in minimally invasive surgery. Stud Health Technol Inform. 2007;125:149.

    PubMed  Google Scholar 

  91. Rosen J, Brown JD, Chang L, Sinanan MN, Hannaford B. Generalized approach for modeling minimally invasive surgery as a stochastic process using a discrete markov model. Biomed Eng IEEE Trans. 2006;53(3):399–413.

    Article  Google Scholar 

  92. Kragic D, Marayong P, Li M, Okamura AM, Hager GD. Human-machine collaborative systems for microsurgical applications. Int J Robot Res. 2005;24(9):731–41.

    Article  Google Scholar 

  93. Li M, Okamura AM. Recognition of operator motions for real-time assistance using virtual fixtures. In: Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings. 11th Symposium on. 2003, p. 125–31.

    Google Scholar 

  94. Lin HC, Shafran I, Yuh D, Hager GD. Towards automatic skill evaluation: detection and segmentation of robot-assisted surgical motions. Comput Aided Surg. 2006;11(5):220–30.

    Article  PubMed  Google Scholar 

  95. Megali G, Sinigaglia S, Tonet O, Dario P. Modelling and evaluation of surgical performance using hidden Markov models. Biomed Eng IEEE Trans. 2006;53(10):1911–9.

    Article  Google Scholar 

  96. Dosis A, Bello F, Gillies D, Undre S, Aggarwal R, Darzi A. Laparoscopic task recognition using hidden markov models. Stud Health Technol Inform. 2005;111:115–22.

    PubMed  Google Scholar 

  97. Reiley CE, et al. Automatic recognition of surgical motions using statistical modeling for capturing variability. Stud Health Technol Inform. 2008;132:396.

    PubMed  Google Scholar 

  98. Judkins T, Oleynikov D, Stergiou N. Objective evaluation of expert performance during human robotic surgical procedures. J Robot Surg. 2008;1(4):307–12.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Oleynikov D, Judkins TN, Stergiou N. Objective evaluation of expert and novice performance during robotic surgical training tasks. Surg Endosc. 2009;23(3):590–7.

    Article  PubMed  Google Scholar 

  100. Narazaki K, Oleynikov D, Stergiou N. Robotic surgery training and performance: identifying objective variables for quantifying the extent of proficiency. Surg Endosc. 2006;20(1):96–103.

    Article  CAS  PubMed  Google Scholar 

  101. Kowalewski TM, et al. Beyond task time: Automated measurement augments fundamentals of laparoscopic skills methodology. J. Surg. Res. 2014;192(2):329–38.

    Article  PubMed  Google Scholar 

  102. Law B, Atkins MS, Kirkpatrick AE, Lomax AJ. Eye gaze patterns differentiate novice and experts in a virtual laparoscopic surgery training environment. In: Proceedings of the Eye tracking research applications symposium on Eye tracking research applications ETRA2004. 2004, vol. 1, no. 212, p. 41–8.

    Google Scholar 

  103. MacKenzie CL, Graham ED, Cao CG, Lomax AJ. Virtual hand laboratory meets endoscopic surgery. Stud Health Technol Inform. 1999;62:212–8.

    Google Scholar 

  104. Cuschieri A. Visual displays and visual perception in minimal access surgery. Semin Laparosc Surg. 1995;2(3):209–14.

    Google Scholar 

  105. Ibbotson JA, MacKenzie CL, Cao CG, Lomax AJ. Gaze patterns in laparoscopic surgery. Stud Health Technol Inform. 1999;62:154–60.

    Google Scholar 

  106. Ahmidi N, Hager G, Ishii L, Fichtinger G, Gallia G, Ishii M. Surgical task and skill classification from eye tracking and tool motion in minimally invasive surgery. Med Image Comput Comput Interv. 2010;2010:295–302.

    Google Scholar 

  107. Yule S, Flin R, Maran N, Rowley D, Youngson G, Paterson-Brown S. Surgeons’ non-technical skills in the operating room: reliability testing of the NOTSS behavior rating system. World J Surg. 2008;32(4):548–56.

    Article  PubMed  Google Scholar 

  108. Marshall SD, Mehra R. The effects of a displayed cognitive aid on non-technical skills in a simulated ‘can’t intubate, can’t oxygenate’ crisis. Anaesthesia. 2014;69(7):669–77.

    Article  CAS  PubMed  Google Scholar 

  109. Bharathan R, Aggarwal R, Darzi A. Operating room of the future. Best Pract Res Clin Obstet Gynaecol. 2013;27(3):311–22.

    Article  PubMed  Google Scholar 

  110. Tao J, Tan T. Affective computing: A review. In: International conference on affective computing and intelligent interaction. 2005. p. 981–95.

    Google Scholar 

  111. Picard RW, Picard R. Affective computing, vol. 252. Cambridge: MIT press; 1997.

    Google Scholar 

  112. Borish M, Cordar A, Foster A, Kim T, Murphy J, Chaudhary N, Lok B. Utilizing real-time human-assisted virtual humans to increase real-world interaction empathy. KEER 2014 Conference. Linköping, Sweden. June 10–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Kowalewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kowalewski, T.M., Lendvay, T.S. (2019). Performance Assessment. In: Stefanidis, D., Korndorffer Jr., J., Sweet, R. (eds) Comprehensive Healthcare Simulation: Surgery and Surgical Subspecialties. Comprehensive Healthcare Simulation. Springer, Cham. https://doi.org/10.1007/978-3-319-98276-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98276-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98275-5

  • Online ISBN: 978-3-319-98276-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics