Skip to main content

Stem Cell Roles and Applications in Genetic Neurodegenerative Diseases

  • Chapter
  • First Online:
Stem Cells for Cancer and Genetic Disease Treatment

Part of the book series: Stem Cells in Clinical Applications ((SCCA))

Abstract

Neurodegeneration is an umbrella term for the progressive loss of function or structure of neurons. A wide range of neurodegenerative diseases, including Alzheimer’s, amyotrophic lateral sclerosis, Parkinson’s and Huntington’s diseases, occur because of neurodegenerative processes. There are currently no cures for both the neurological disorders/diseases Alzheimer’s and Parkinson’s that are marked by a selective loss of neurons. Current drug treatments for these types of diseases do not address the underlying pathology and can only relieve patient’s symptoms. Therefore, there is an urgent need to develop novel therapeutic approaches that can delay the onset or slow the progression of these diseases. Stem cells are potential and promising therapeutic options since they can be expanded easily and survive transplantation effectively. Stem cells can facilitate neovascularization and neurogenesis processes by producing multiple growth factors, cytokines, and other factors that have anti-apoptotic, anti-inflammatory, or anti-oxidative effects. Furthermore, the cell replacement therapeutic approaches are promising for common neurological diseases such as Alzheimer’s and Parkinson’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

BDNF:

Brain-derived neurotrophic factor

ESC:

Embryonic stem cell

HSC:

Hematopoietic stem cell

MSC:

Mesenchymal stem cell

NSC:

Neural stem cell

PD:

Parkinson’s disease

UCB-MSCs:

Umbilical cord blood-derived MSCs

References

  • Abdelkrim H, Juan DB, Jane W, Mohamed A, Bernat S (2009) The immune boundaries for stem cell based therapies: problems and prospective solutions. J Cell Mol Med 13:1464–1475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abdel-Salam OM (2008) Drugs used to treat Parkinson’s disease, present status and future directions. CNS Neurol Disord Drug Targets 7:321–342

    CAS  PubMed  Google Scholar 

  • Adewumi O, Aflatoonian B, Ahrlund-Richter L, Amit M, Andrews PW, Beighton G, Bello PA, Benvenisty N, Berry LS, Bevan S et al (2007) Characterization of human embryonic stem cell lines by the International Stem Cell Initiative. Nat Biotechnol 25:803–816

    CAS  PubMed  Google Scholar 

  • Akiyama K, Chen C, Wang D, Xu X, Qu C, Yamaza T, Cai T, Chen W, Sun L, Shi S (2012) Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis. Cell Stem Cell 10:544–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alviano F, Fossati V, Marchionni C, Arpinati M, Bonsi L, Franchina M, Lanzoni G, Cantoni S, Cavallini C, Bianchi F, Tazzari PL, Pasquinelli G, Foroni L, Ventura C, Grossi A, Bagnara GP (2007) Term amniotic membrane is a high throughput source for multipotent mesenchymal stem cells with the ability to differentiate into endothelial cells in vitro. BMC Dev Biol 7:11

    PubMed  PubMed Central  Google Scholar 

  • Anderson WS, Lenz FA (2006) Surgery insight: deep brain stimulation for movement disorders. Nat Clin Pract Neurol 2:310–320

    PubMed  Google Scholar 

  • Anderson WS, O’Hara S, Lawson HC, Treede RD, Lenz FA (2006) Plasticity of pain-related neuronal activity in the human thalamus. Prog Brain Res 157:353–364

    Google Scholar 

  • Arnold SE, Hyman BT, Flory J, Damasio AR, Van Hoesen GW (1991) The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease. Cereb Cortex 1:103–116

    CAS  PubMed  Google Scholar 

  • Avasthi S, Srivastava RN, Singh A, Srivastava M (2008) Stem cell: past, present and future—a review article. IJMU 3:22–30

    Google Scholar 

  • Baizabal JM, Magaril MF, Jesu SO, Covarrubias L (2003) Neural stem cells in development and regenerative medicine. Arch Med Res 34:572–588

    CAS  PubMed  Google Scholar 

  • Bajada S, Mazakova I, Richardson JB, Ashammakhi N (2008) Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med 2:169–183

    CAS  PubMed  Google Scholar 

  • Becker AJ, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454

    CAS  PubMed  Google Scholar 

  • Behrstock S, Ebert A, McHugh J, Vosberg S, Moore J et al (2006) Human neural progenitors deliver glial cell line-derived neurotrophic factor to parkinsonian rodents and aged primates. Gene Ther 13:379–388

    CAS  PubMed  Google Scholar 

  • Berchtold NC, Cotman CW (1998) Evolution in the conceptualization of dementia and Alzheimer’s disease: Greco-Roman period to the 1960s. Neurobiol Aging 19:173–189

    CAS  PubMed  Google Scholar 

  • Birks J (2006) Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 1:CD005593

    Google Scholar 

  • Blundell R, Shah M (2015) Neurodegenerative diseases and stem cell transplantation. J Stem Cell Res Ther 5:277. https://doi.org/10.4172/2157-7633.1000277

    Article  CAS  Google Scholar 

  • Brehm M, Zeus T, Kostering M, Kogler G, Wernet P, Strauer BE (2002) Intracoronary transplantation of autologous bone-marrow cells for therapeutic angiogenesis in patients with myocardial infarction. Eur J Clin Investig 32(2):77

    Google Scholar 

  • Brignier AC, Gewirtz AM (2010) Embryonic and adult stem cell therapy. J Allergy Clin Immunol 25:S336–S344

    Google Scholar 

  • Busch SA, Hamilton JA, Horn KP, Cuascut FX, Cutrone R, Lehman N, Deans RJ, Ting AE, Mays RW, Silver J (2011) Multipotent adult progenitor cells prevent macrophage-mediated axonal dieback and promote regrowth after spinal cord injury. J Neurosci 31:944–953

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cacciatore I, Baldassarre L, Fornasari E, Mollica A, Pinnen F (2012) Recent advances in the treatment of neurodegenerative diseases based on GSH delivery systems. Oxidative Med Cell Longev 2012:1–12

    Google Scholar 

  • Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J CellBiochem 98:1076–1084

    CAS  Google Scholar 

  • Castillo-Melendez M, Yawno T, Jenkin G, Miller SL (2013) Stem cell therapy to protect and repair the developing brain: a review of mechanisms of action of cord blood and amnion epithelial derived cells. Front Neurosci 7:194

    PubMed  PubMed Central  Google Scholar 

  • Chang YJ, Hwang SM, Tseng CP, Cheng FC, Huang SH, Hsu LF, Hsu LW, Tsai MS (2010) Isolation of mesenchymal stem cells with neurogenic potential from the mesoderm of the amniotic membrane. Cells Tissues Organs 192:93–105

    PubMed  Google Scholar 

  • Chapel A, Bertho JM, Bensiodhoum M, Fouillard L, Young RG, Frick J, Demarquay C, Cuvelier F, Mathieu E, Trompier F, Dudoignon N, Germain C, Mazurier C, Aigueperse J, Borneman J, Gorin NC, Goumelon P, Thierry D (2003) Mesenchymal stem cells home to injured tissues when co-infused with hematopoietic cells to treat a radiation-induced multi organ failure syndrome. J Gene Med 5:1028–1038

    PubMed  Google Scholar 

  • Chaudhuri KR, Schapira AH (2009) Non-motor symptoms of Parkinson’s disease: dopaminergic pathophysiology and treatment. Lancet Neurol 8:464–474

    CAS  PubMed  Google Scholar 

  • Chavakis E, Urbich C, Dimmeler S (2008) Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J Mol Cell Cardiol 45:514–522

    CAS  PubMed  Google Scholar 

  • Chen T, You Y, Jiang H, Wang ZZ (2017) Epithelial–mesenchymal transition (EMT): a biological process in the development, stem cell differentiation, and tumorigenesis. J Cell Physiol 232:3261–3272

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi MR, Kim HY, Park JY, Lee TY, Baik CS, Chai YG, Jung KH, Park KS, Roh W, Kim KS, Kim SH (2010) Selection of optimal passage of bone marrow-derived mesenchymal stem cells for stem cell therapy in patients with amyotrophic lateral sclerosis. Neurosci Lett 472:94–98

    CAS  PubMed  Google Scholar 

  • Chuang J-H, Tung L-C, Lin Y (2015) Neural differentiation from embryonic stem cells in vitro: an overview of the signaling pathways. World J Stem Cells 7(2):437–447

    PubMed  PubMed Central  Google Scholar 

  • Clarke DL, Johansson CB, Wilbertz J, Veress B, Nilsson E, Karlström H, Lendahl U, Frisén J (2000) Generalized potential of adult neural stem cells. Science 288:1660–1663

    CAS  PubMed  Google Scholar 

  • Cselenyak A, Pankotai E, Horvath EM, Kiss L, Lacza Z (2010) Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections. BMC Cell Biol 11:29

    PubMed  PubMed Central  Google Scholar 

  • da Silva Meirelles L, Caplan AI, Nardi NB (2008) In search of the in vivo identity of mesenchymal stem cells. Stem Cells 26:2287–2299

    PubMed  Google Scholar 

  • Daar AS, Greenwood HL (2007) A proposed definition of regenerative medicine. J Tissue Eng Regen Med 1:179–184

    CAS  PubMed  Google Scholar 

  • Das S, Zhou K, Ghosh D et al (2016) Implantable amyloid hydrogels for promoting stem cell differentiation to neurons. NPG Asia Mater 8:e304. https://doi.org/10.1038/am.2016.116

    Article  CAS  Google Scholar 

  • De Coppi P, Bartsch GJ, Siddiqui MM, Xu T, Santos CC, Perin L, Mostoslavsky G, Serre AC, Snyder EY, Yoo JJ, Furth ME, Soker S, Atala A (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 25:100–106

    PubMed  Google Scholar 

  • de Girolamo L, Lucarelli E, Alessandri G, Avanzini MA, Bernardo ME, Biagi E, Brini AT, D’Amico G, Fagioli F, Ferrero I et al (2013) Mesenchymal stem/stromal cells: a new “cells as drugs” paradigm. Efficacy and critical aspects in cell therapy. Curr Pharm Des 19:2459–2473

    PubMed  PubMed Central  Google Scholar 

  • Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED (2006) Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 24:1054–1064

    CAS  PubMed  Google Scholar 

  • Dharmasaroja P (2009) Bone marrow-derived mesenchymal stem cells for the treatment of ischemic stroke. J Clin Neurosci 16:12–20

    PubMed  Google Scholar 

  • El-Hashash AH (2016a) Stem cells, developmental biology and reparative/regenerative medicine: tools and hope for better human life. In: El-Hashash A (ed) Developmental and stem cell biology in health and disease. Bentham Science Publisher, Madison, pp 3–5

    Google Scholar 

  • El-Hashash AH (2016b) Neural crest stem cells: a hope for neural regeneration. In: Abdelalim E (ed) Recent advances in stem cells: from basic research to clinical applications. Springer, Berlin, pp 233–250

    Google Scholar 

  • Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    CAS  PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA (2007) Glycerophospholipids in the brain: phospholipases A2 in neurological disorders. Springer, New York

    Google Scholar 

  • Fasano M, Alberio T, Lopiano L (2008) Peripheral biomarkers of Parkinson’s disease as early reporters of central neurodegeneration. Biomark Med 2:465–478

    CAS  PubMed  Google Scholar 

  • Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301

    PubMed  Google Scholar 

  • Fibbe WE, Nauta AJ, Roelofs H (2007) Modulation of immune responses by mesenchymal stem cells. Ann N Y Acad Sci 1106:272–278

    CAS  PubMed  Google Scholar 

  • Forte E, Chimenti I, Rosa P (2017) EMT/MET at the crossroad of stemness, regeneration and oncogenesis: the Ying-Yang equilibrium recapitulated in cell spheroids. Cancers 9(8):98. https://doi.org/10.3390/cancers9080098

    Article  CAS  PubMed Central  Google Scholar 

  • Frenck R, Blackburn E, Shannon K (1998) The rate of telomere sequence loss in human leukocytes varies with age. Proc Natl Acad Sci U S A 95:5607–5610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gai WP, Blessing WW, Blumbergs PC (1995) Ubiquitin-positive degenerating neurites in the brainstem in Parkinson’s disease. Brain 118:1447–1459

    PubMed  Google Scholar 

  • Galindo LT, Filippo TR, Semedo P, Ariza CB, Moreira CM, Camara NO, Porcionatto MA (2011) Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol Res Int 2011, 564089 9 pages

    PubMed  PubMed Central  Google Scholar 

  • Galli R, Borello U, Gritti A, Minasi MG, Bjornson C, Coletta M et al (2000) Skeletal myogenic potential of human and mouse neural stem cells. Nat Neurosci 3:986–991

    CAS  PubMed  Google Scholar 

  • Gardner RL (2007) Stem cells and regenerative medicine: principles, prospects and problems. C R Biol 330:465–473

    CAS  PubMed  Google Scholar 

  • Gerlach M, Maetzler W, Broich K, Hampel H, Rems L, Reum T, Riederer P, Stöffler A, Streffer J, Berg D (2012) Biomarker candidates of neurodegeneration in Parkinson’s disease for the evaluation of disease-modifying therapeutics. J Neural Transm 119:39–52

    CAS  PubMed  Google Scholar 

  • Gomez-Isla T, Hollister R, West H, Mui S, Growdon JH, Petersen RC, Parisi JE, Hyman BT (1997) Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 41:17–24

    CAS  PubMed  Google Scholar 

  • Grade S, Götz M (2017) Neuronal replacement therapy: previous achievements and challenges ahead. NPJ Regen Med 2(29):1–11

    Google Scholar 

  • Han F, Baremberg D, Gao J et al (2015) Development of stem cell-based therapy for Parkinson’s disease. Transl Neurodegen 4:16

    Google Scholar 

  • Hatzimichael E, Tuthill M (2010) Hematopoietic stem cell transplantation. Stem Cells Cloning 3:105–117

    PubMed  PubMed Central  Google Scholar 

  • He S, Chen J, Zhang Y et al (2017) Sequential EMT-MET induces neuronal conversion through Sox2. Cell Discov 3:17017. https://doi.org/10.1038/celldisc.2017.17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Himes BT, Neuhuber B, Coleman C, Kushner R, Swanger SA, Kopen GC, Wagner J, Shumsky JS, Fischer I (2006) Recovery of function following grafting of human bone marrow-derived stromal cells into the injured spinal cord. Neurorehabil Neural Repair 20:278–296

    PubMed  Google Scholar 

  • Ho HY, Li M (2006) Potential application of embryonic stem cells in Parkinson’s disease: drug screening and cell therapy. Regen Med 1:175–182

    CAS  PubMed  Google Scholar 

  • Hu X et al (2016) Identification of a common mesenchymal stromal progenitor for the adult haematopoietic niche. Nat Commun 7:13095. https://doi.org/10.1038/ncomms13095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson KA, Mi T, Goodell MA (1999) Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci U S A 96:14482–14486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jankovic J, Aguilar LG (2008) Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr Dis Treat 4:743–757. https://doi.org/10.2147/NDT.S2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14:457–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones R, Lebkowski J, McNiece I (2010) Stem cells. Biol Blood Marrow Transplant 16:S115–S118

    CAS  PubMed  Google Scholar 

  • Kim D, Chun BG, Kim YK, Lee YH, Park CS, Jeon I, Cheong C, Hwang TS, Chung H, Gwag BJ, Hong KS, Song J (2008) In vivo tracking of human mesenchymal stem cells in experimental stroke. Cell Transplant 16:1007–1012

    PubMed  Google Scholar 

  • Kim HJ, Lee JH, Kim SH (2010) Therapeutic effects of human mesenchymal stem cells on traumatic brain injury in rats: secretion of neurotrophic factors and inhibition of apoptosis. J Neurotrauma 27:131–138

    PubMed  Google Scholar 

  • Kim YS, Kim YK, Hwang O, Kim DJ (2012) Pathology of neurodegenerative diseases. In: Gonzalez-Quevedo A (ed) Brain damage—bridging between basic research and clinics. InTech, Croatia, pp 99–138

    Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease: pathophysiologic and clinical implications. N Engl J Med 318:876–880

    CAS  PubMed  Google Scholar 

  • Kofidis T, deBruin JL, Yamane T, Balsam LB et al (2004) IGF-1 promotes engraftment, differentiation and functional improvement after transfer of embryonic stem cells for myocardial restoration. Stem Cells 22:1239–1245

    CAS  PubMed  Google Scholar 

  • Kostic V, Przedborski S, Flaster E, Sternic N (1991) Early development of levodopa-induced dyskinesias and response fluctuations in young-onset Parkinson’s disease. Neurology 41:202–205

    CAS  PubMed  Google Scholar 

  • Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M, Osborne L, Wang X, Finegold M, Weissman IL, Grompe M (2000) Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat Med 6:1229–1234

    CAS  PubMed  Google Scholar 

  • Lanctôt K, Rajaram RD, Herrmann N (2009) Review: therapy for Alzheimer’s disease: how effective are current treatments? Ther Adv Neurol Disord 2:163–180

    PubMed  PubMed Central  Google Scholar 

  • Landry DW, Zucker HA (2004) Embryonic death and the creation ofhuman embryonic stem cells. J Clin Invest 114:1184–1186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5:485–489

    PubMed  Google Scholar 

  • Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262:509–525

    PubMed  Google Scholar 

  • Lee EH, Hui JH (2006) The potential of stem cells in orthopaedic surgery. J Bone Jt Surg 88:841–853

    CAS  Google Scholar 

  • Lee PH, Park HJ (2009) Bone marrow-derived mesenchymal stem cell therapy as a candidate disease-modifying strategy in Parkinson’s disease and multiple system atrophy. J Clin Neurol 5:1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levi B, James AW, Nelson ER, Vistnes D, Wu B, Lee M, Gupta A, Longaker MT (2010) Human adipose derived stromal cells heal critical size mouse calvarial defects. PLoS One. 5:11177

    Google Scholar 

  • Li L, Xia Y (2014) Study of adipose tissue-derived mesenchymal stem cells transplantation for rats with dilated cardiomyopathy. Ann Thorac Cardiovasc Surg 20(5):398–406

    PubMed  Google Scholar 

  • Li SF, Lu XF, Sun MH (2002) Biological characteristics of mesenchymal stem cells in vitro derived from bone marrow of banna minipig inbred line. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 16:354–358

    PubMed  Google Scholar 

  • Li P, Yang B, Rand Gao W-Q (2014) Contributions of epithelial-mesenchymal transition and cancer stem cells to the development of castration resistance of prostate cancer. Mol Cancer 13:55

    PubMed  PubMed Central  Google Scholar 

  • Liechty KW, MacKenzie TC, Shaaban AF, Radu A et al (2000) Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 6:1282–1286

    CAS  PubMed  Google Scholar 

  • Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders.how to make it work. Nat Med 10:S42–S50

    PubMed  Google Scholar 

  • Liu YH, Ravi K, Wu SM (2008) Cardiovascular stem cells in regenerative medicine: ready for prime time? Drug Discov Today Ther Strateg 5:201

    PubMed  PubMed Central  Google Scholar 

  • Lu D, Mahmood A, Wang L, Li Y, Lu M, Chopp M (2001) Adult human bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 12:559–563

    CAS  PubMed  Google Scholar 

  • Ma M, Sha C, Zhou Z, Zhou Q, Li Q (2008) Generation of patient-specific pluripotent stem cells and directed differentiation of embryonic stem cells for regenerative medicine. J Nanjing Med Univ 22:135–142

    Google Scholar 

  • Mahmood A, Lu D, Chopp M (2004) Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma 21:33–39

    PubMed  Google Scholar 

  • Markov V, Kusumi K, Tadesse MG, William DA, Hall DM, Lounev V, Carlton A, Leonard J, Cohen RI, Rappaport EF, Saitta B (2007) Identification of cord blood-derived mesenchymal stem/stromal cell populations with distinct growth kinetics, differentiation potentials, and gene expression profiles. Stem Cells Dev 16:53–73

    CAS  PubMed  Google Scholar 

  • Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A 78:7634–7638

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin MJ, Muotri A, Gage F, Varki A (2005) Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med 11:228–232

    CAS  PubMed  Google Scholar 

  • Mayeux R (2003) Epidemiology of neurodegeneration. Annu Rev Neurosci 26:81–104

    CAS  PubMed  Google Scholar 

  • Mezey E, Chandross KJ, Harta G, Maki RA, McKercher SR (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782

    CAS  PubMed  Google Scholar 

  • Miki T, Lehmann T, Cai H, Stolz DB, Strom SC (2006) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23:1549–1559

    Google Scholar 

  • Mizuno H (2009) Adipose-derived stem cells for tissue repair and regeneration: ten years of research and a literature review. J Nippon Med Sch 76:56–66

    PubMed  Google Scholar 

  • Munoz JL, Greco SJ, Patel SA, Sherman LS, Bhatt S, Bhatt RS, Shrensel JA, Guan YZ, Xie G, Ye JH, Rameshwar P, Siegel A (2012) Feline bone marrow-derived mesenchymal stromal cells (MSCs) show similar phenotype and functions with regards to neuronal differentiation as human MSCs. Differentiation 84:214–222

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagal A, Singla RK (2012) Parkinson’s disease: diagnosis, therapeutics and management. WebmedCentral Pharmaceutic Sci 3:WMC00 3670

    Google Scholar 

  • Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110:3499–3506

    CAS  PubMed  Google Scholar 

  • Oh JY, Kim MK, Shin MS, Lee HJ, Ko JH, Wee WR, Lee JH (2008) The anti-inflammatory and antiangiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury. Stem Cells 26:1047–1055

    CAS  PubMed  Google Scholar 

  • Olanow CW, Perl DP, DeMartino GN, McNaught KS (2004) Lewy-body formation is an aggresome-related process: a hypothesis. Lancet Neurol 3:496–503

    PubMed  Google Scholar 

  • Park HJ, Lee PH, Bang OY, Lee G, Ahn YH (2008) Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. J Neurochem 107:141

    CAS  PubMed  Google Scholar 

  • Parkinson J (2002) An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci 14:223–236

    PubMed  Google Scholar 

  • Parr AM, Tator CH, Keating A (2007) Bone marrow-derived mesenchymal stromal cells for the repair of central nervous system injury. Bone Marrow Transplant 40:609–619

    CAS  PubMed  Google Scholar 

  • Piccini P, Pavese N, Hagell P, Reimer J, Bjorklund A et al (2005) Factors affecting the clinical outcome after neural transplantation in Parkinson disease. Brain 128:2977–2986

    PubMed  Google Scholar 

  • Polak J, Mantalaris S, Harding SE (2008) Advances in tissue engineering. Imperial College Press, London, pp 1–903

    Google Scholar 

  • Ponte AL, Marais E, Gallay N, Langonné A, Delorme B, Hérault O, Charbord P, Domenech J (2007) The in vitro migration capacity of human bone marrow mesenchymal stem cells: comparison of chemokine and growth factor chemotactic activities. Stem Cells 25:1737–1745

    CAS  PubMed  Google Scholar 

  • Potapova IA, Gaudette GR, Brink PR, Robinson RB, Rosen MR, Cohen IS, Doronin SV (2007) Mesenchymal stem cells support migration, extracellularmatrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells 25:1761–1768

    CAS  PubMed  Google Scholar 

  • Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP (2013) The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement 9:63–75

    PubMed  Google Scholar 

  • Qian D, Wei G, Xu C, He Z et al (2016) Bone marrow-derived mesenchymal stem cells (BMSCs) repair acute necrotized pancreatitis by secreting microRNA-9 to target the NF-κB1/p50 gene in rats. Nat Sci Rep 7:581. https://doi.org/10.1038/s41598-017-00629-3

    Article  CAS  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s Disease. N Engl J Med 362:329–344

    CAS  PubMed  Google Scholar 

  • Ramakrishna V, Janardhan PB, Sudarsanareddy L (2011) Stem cells and regenerative medicine—a review. Ann Rev Res Biol 1:79–110

    CAS  Google Scholar 

  • Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM (2001) Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 98:2615–2625

    CAS  PubMed  Google Scholar 

  • Rigamonti A, Repetti GG, Sun C et al (2016) Large-scale production of mature neurons from human pluripotent stem cells in a three-dimensional suspension culture system. Stem Cell Rep 6(6):993–1008

    CAS  Google Scholar 

  • Rocca WA, Petersen RC, Knopman DS, Hebert LE, Evans DA, Hall KS, Gao S, Unverzagt FW, Langa KM, Larson EB, White LR (2011) Trends in the incidence and prevalence of Alzheimer’s disease, dementia, and cognitive impairment in the United States. Alzheimers Dement 7:80–93

    PubMed  PubMed Central  Google Scholar 

  • Rubinsztein DC (2006) The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443:780–786

    CAS  PubMed  Google Scholar 

  • Rufer N, Brummendorf TH, Kolvraa S et al (1999) Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J Exp Med 190:157–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanberg PR (2007) Neural stem cells for Parkinson’s disease: to protect and repair. Proc Natl Acad Sci U S A 104:11869–11870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247–256

    CAS  PubMed  Google Scholar 

  • Seo JH, Cho SR (2012) Neurorestoration induced by mesenchymal stem cells: potential therapeutic mechanisms for clinical trials. Yonsei Med J 53:1059–1067

    PubMed  PubMed Central  Google Scholar 

  • Shamblott MJ, Axelman J, Wang S, Bugg EM, Littlefield JW, Donovan PJ, Blumenthal PD, Huggins GR, Gearhart JD (1998) Derivation of pluripotent stem cells from cultured human primordial germ cells. PNAS 95:13726–13731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheyn D, Mizrahi O, Benjamin S, Gazit Z, Palled G, Gazit D (2010) Genetically modified cells in regenerative medicine and tissue engineering. Adv Drug Deliv Rev 62(7–8):683–698. https://doi.org/10.1016/j.addr.2010.01.002

    Article  CAS  PubMed  Google Scholar 

  • Shin JY, Park HJ, Kim HN et al (2014) Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy 10(1):32–44. https://doi.org/10.4161/auto.26508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Si YL, Zhao YL, Hao HJ, Fu XB, Han WD (2011) MSCs: biological characteristics, clinical applications and their outstanding concerns. Ageing Res Rev 10:93–103

    CAS  PubMed  Google Scholar 

  • Singh P, Williams DJ (2008) Cell therapies: realizing the potential of this new dimension to medical therapeutics. J Tissue Eng Regen Med 2:307–319

    CAS  PubMed  Google Scholar 

  • Speth JM, Hoggatt J, Singh P, Pelus LM (2014) Pharmacologic increase in HIF1α enhances hematopoietic stem and progenitor homing and engraftment. Blood 123(2):203–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner AF, Karl N, Pilapil C, Noth U, Evans CH, Murray MM (2006) Multilineage mesenchymal differentiation potential of cells migrating out of the anterior cruciate ligament. In: Transactions of the 52nd annual meeting of the Orthopaedic Research Society, Chicago, IL. p 1133

    Google Scholar 

  • Tabert MH, Liu X, Doty RL, Serby M, Zamora D, Pelton GH, Marder K, Albers M, Stern Y, Devanand DP (2005) A 10-item smell identification scale related to risk for Alzheimer’s disease. Ann Neurol 58:155–160

    PubMed  Google Scholar 

  • Takagi Y, Takahashi J, Saiki H et al (2005) Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J Clin Invest 115:102–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tayeb HO, Yang HD, Price BH, Tarazi FI (2012) Pharmacotherapies for Alzheimer’s disease: beyond cholinesterase inhibitors. Pharmacol Ther 134:8–25

    CAS  PubMed  Google Scholar 

  • Terrigno M, Busti I, Alia C, Pietrasanta M, Arisi I, D’Onofrio M, Caleo M, Cremisi F (2018) Neurons generated by mouse ESCs with hippocampal or cortical identity display distinct projection patterns when co-transplanted in the adult brain. Stem Cell Rep 10(3):1016–1029

    CAS  Google Scholar 

  • Thiery JP, Acloque H, Ruby YJ, Huang M, Nieto A (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139(5):871–890

    CAS  PubMed  Google Scholar 

  • Thomson JA, Eldor JI, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    CAS  PubMed  Google Scholar 

  • Togel F, Weiss K, Yang Y, Hu Z, Zhang P, Westenfelder C (2007) Vasculotropic, paracrine actions of infused mesenchymal stem cells are important to the recovery from acute kidney injury. Am J Physiol Renal Physiol 292:F1626–F1635

    CAS  PubMed  Google Scholar 

  • Ulrike M, Konrad M (2003) Alzheimer: the life of a physician and the career of a disease. Columbia University Press, New York, p 270

    Google Scholar 

  • van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ (2010a) Repeated mesenchymal stem cell treatment after neonatal hypoxia-ischemia has distinct effects on formation and maturation of new neurons and oligodendrocytes leading to restoration of damage, corticospinal motor tract activity, and sensorimotor function. J Neurosci 30(28):9603–9611

    PubMed  PubMed Central  Google Scholar 

  • van Velthoven CT, Kavelaars A, van Bel F, Heijnen CJ (2010b) Mesenchymal stem cell treatment after neonatal hypoxic-ischemic brain injury improves behavioral outcome and induces neuronal and oligodendrocyte regeneration. Brain Behav Immun 24(3):387–393

    PubMed  Google Scholar 

  • Waldemar G, Dubois B, Emre M, Georges J, McKeith IG, Rossor M, Scheltens P, Tariska P, Winblad B (2007) Recommendations for the diagnosis and management of Alzheimer’s disease and other disorders associated with dementia: EFNS guideline. Eur J Neurol 14:e1–e26

    CAS  PubMed  Google Scholar 

  • Weissman IL (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168

    CAS  PubMed  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    CAS  PubMed  Google Scholar 

  • Wu C-C et al (2016) Gain of BDNF function in engrafted neural stem cells promotes the therapeutic potential for Alzheimer’s disease. Sci Rep 6:27358. https://doi.org/10.1038/srep27358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xin H, Li Y, Shen LH, Liu X, Wang X, Zhang J, Pourabdollah-Nejad DS, Zhang C, Zhang L, Jiang H, Zhang ZG, Chopp M (2010) Increasing tPA activity in astrocytes induced by multipotent mesenchymal stromal cells facilitate neurite outgrowth after stroke in the mouse. PLoS One 5:9027

    Google Scholar 

  • Ye M, Wang XJ, Zhang YH, Lu GQ, Liang L, Xu JY, Chen SD (2007) Therapeutic effects of differentiated bone marrow stromal cell transplantation on rat models of Parkinson’s disease. Parkinsonism Relat Disord 13:44–49

    PubMed  Google Scholar 

  • Yi ES, Lee SH, Son MH, Kim JY, Cho EJ, Lim SJ, Cheuh HW, Yoo KH, Sung KW, Koo HH (2012) Hematopoietic stem cell transplantation in children with acute leukemia: similar outcomes in recipients of umbilical cord blood versus marrow or peripheral blood stem cells from related or unrelated donors. Korean J Pediatr 55:93–99

    PubMed  PubMed Central  Google Scholar 

  • Yue C, Jing N (2015) The promise of stem cells in the therapy of Alzheimer’s disease. Transl Neurodegener 4:8

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li Y, Chen J, Yang M, Katakowski M, Lu M, Chopp M (2004) Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res 1030:19–27

    CAS  PubMed  Google Scholar 

  • Zhang J, Li Y, Lu M, Cui Y, Chen J, Noffsinger L, Elias SB, Chopp M (2006) Bone marrow stromal cells reduce axonal loss in experimental autoimmune encephalomyelitis mice. J Neurosci Res 84:587–595

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ku, J., El-Hashash, A. (2018). Stem Cell Roles and Applications in Genetic Neurodegenerative Diseases. In: Pham, P., El-Hashash, A. (eds) Stem Cells for Cancer and Genetic Disease Treatment. Stem Cells in Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-98065-2_9

Download citation

Publish with us

Policies and ethics