Skip to main content

Robust Discriminative Principal Component Analysis

  • Conference paper
  • First Online:
Biometric Recognition (CCBR 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10996))

Included in the following conference series:

Abstract

Least square regression (LSR) and principal component analysis (PCA) are two representative dimensionality reduction algorithms in the fields of machine learning. In this paper, we propose a novel method to jointly learn projections from the subspaces derived from the modified LSR and PCA. To implement simultaneous feature learning, we design a novel joint regression learning model by imposing two orthogonal constraints. Therefore, the learned projections can preserve the minimum reconstruction error and the discriminative information in the low-dimensional subspaces. Besides, since the traditional LSR and PCA are sensitive to the outliers, we utilize the robust L2,1-norm as the metric of loss function to improve the model’s robustness. A simple iterative algorithm is proposed to solve the proposed framework. Experiments on face databases show the promising performance of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdi, H., Williams, L.J.: Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2, 433–459 (2010)

    Article  Google Scholar 

  2. Jolliffe, I.T.: Principal Component Analysis, vol. 87, pp. 41–64. Springer, Berlin (2010). https://doi.org/10.1007/b98835

    Book  Google Scholar 

  3. Zhou, Z., Jin, Z.: Double nuclear norm-based robust principal component analysis for image disocclusion and object detection. Neurocomputing 205, 481–489 (2016)

    Article  Google Scholar 

  4. Lai, Z., Xu, Y., Chen, Q., Yang, J., Zhang, D.: Multilinear sparse principal component analysis. IEEE Trans. Neural Netw. Learn. Syst. 25, 1942–1950 (2014)

    Article  Google Scholar 

  5. Zhang, F., Yang, J., Qian, J., Xu, Y.: Nuclear norm-based 2-DPCA for extracting features from images. IEEE Trans. Neural Netw. Learn. Syst. 26, 2247–2260 (2015)

    Article  MathSciNet  Google Scholar 

  6. Brooks, J.P., Boone, E.L.: A pure L1-norm principal component analysis. Comput. Stat. Data Anal. 61, 83 (2013)

    Article  Google Scholar 

  7. Nie, F., Huang, H., Ding, C.H.Q., Luo, D., Wang, H.: Robust principal component analysis with non-greedy l1-norm maximization. Presented at the IJCAI Proceedings-International Joint Conference on Artificial Intelligence (2011)

    Google Scholar 

  8. Kwak, N.: Principal component analysis based on L1-norm maximization. IEEE Trans. Pattern Anal. Mach. Intell. 30, 1672–1680 (2008)

    Article  Google Scholar 

  9. Ding, C., Zhou, D., He, X., Zha, H.: R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 281–288 (2006)

    Google Scholar 

  10. Shi, X., Nie, F., Lai, Z., Guo, Z.: Robust principal component analysis via optimal mean by joint ℓ2,1 and Schatten p-norms minimization. Neurocomputing 283, 205–213 (2018)

    Article  Google Scholar 

  11. Nie, F., Yuan, J., Huang, H.: Optimal mean robust principal component analysis. In: Proceedings of the 31st International Conference on Machine Learning, pp. 1062–1070 (2014)

    Google Scholar 

  12. Yi, S., Lai, Z., He, Z., Cheung, Y.M., Liu, Y.: Joint sparse principal component analysis. Pattern Recognit. 61, 524–536 (2016)

    Article  Google Scholar 

  13. Nie, F., Huang, H., Cai, X., Ding, C.: Efficient and robust feature selection via joint L2,1-norms minimization. In: Advances in Neural Information Processing Systems, pp. 1813–1821 (2010)

    Google Scholar 

  14. Cai, X., Ding, C., Nie, F., Huang, H.: On the equivalent of low-rank linear regressions and linear discriminant analysis based regressions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1124–1132. ACM (2013)

    Google Scholar 

  15. Zou, H., Hastie, T., Tibshirani, R., Url, S.: Sparse principal component analysis. J. Comput. Graph. Stat. 15, 265–286 (2006)

    Article  MathSciNet  Google Scholar 

  16. Yang, J., Yang, J.Y.: Why can LDA be performed in PCA transformed space? Pattern Recognit. 36, 563–566 (2003)

    Article  Google Scholar 

  17. Zheng, W.S., Lai, J.H., Li, S.Z.: 1D-LDA vs. 2D-LDA: when is vector-based linear discriminant analysis better than matrix-based? Pattern Recognit. 41, 2156–2172 (2008)

    Article  Google Scholar 

  18. Fang, X., Xu, Y., Li, X., Lai, Z., Wong, W.K., Fang, B.: Regularized label relaxation linear regression. IEEE Trans. Neural Netw. Learn. Syst. PP, 1–13 (2017)

    Google Scholar 

  19. Martinez, A.M.: The AR face database. CVC Technical Report 24 (1998)

    Google Scholar 

  20. Jonathon Phillips, P., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation methodology for face-recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000)

    Article  Google Scholar 

  21. Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression database. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1615–1618 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of China (Grant 61573248, Grant 61773328, Grant 61773328 and Grant 61703283), Research Grant of The Hong Kong Polytechnic University (Project Code:G-UA2B), China Postdoctoral Science Foundation (Project 2016M590812 and Project 2017T100645), the Guangdong Natural Science Foundation (Project 2017A030313367 and Project 2017A030310067), the Guangdong medical scientific and technological research funding under grant A2017251, Shenzhen Municipal Science and Technology Innovation Council (No. JCYJ20170302153434048, No. JCYJ20160429182058044 and No. JCYJ20160429182058044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihui Lai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, X., Lai, Z., Chen, Y., Kong, H. (2018). Robust Discriminative Principal Component Analysis. In: Zhou, J., et al. Biometric Recognition. CCBR 2018. Lecture Notes in Computer Science(), vol 10996. Springer, Cham. https://doi.org/10.1007/978-3-319-97909-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97909-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97908-3

  • Online ISBN: 978-3-319-97909-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics