Skip to main content

Part of the book series: Outstanding Contributions to Logic ((OCTR,volume 17))

  • 218 Accesses

Abstract

A modal extension of classical syllogistic is given interpreted by the standard relational Kripke semantics. Completeness theorems and decidability for the minimal system and some of its extensions are proven. Completeness with respect to extensions with arbitrary Sahlqvist formulas is also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Blackburn, P., de Rijke, M., & Venema, Y. (2001). Modal Logic. Cambridge Tracts in Theoretical Computer Science. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ferro, A., Omodeo, E. G., & Schwartz, J. T. (1980). Decision procedures for elementary sublanguages of set theory. I: Multilevel syllogistic and some extensions. Communications on Pure and Applied Mathematics 33(6), 599–608.

    Article  Google Scholar 

  • Goranko, V. & Vakarelov, D. (2006). Elementary canonical formulae: Extending Sahlqvist’s theorem. Annals of Pure and Applied Logic 141(1–2), 180–217.

    Article  Google Scholar 

  • Leevers, H. J. & Harris, P. L. (2000). Counterfactual syllogistic reasoning in normal 4-year-olds, children with learning disabilities, and children with autism. Journal of Experimental Child Psychology 76(1), 64–87.

    Article  Google Scholar 

  • Łukasiewicz, J. (1951). Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic (1st ed.). Oxford: Clarendon Press.

    Google Scholar 

  • Łukasiewicz, J. (1957). Aristotle’s Syllogistic from the Standpoint of Modern Formal Logic (2nd ed.). Oxford: Clarendon Press.

    Google Scholar 

  • McAllester, D. A. & Givan, R. (1992). Natural language syntax and first-order inference. Artificial Intelligence 56(1), 1–20.

    Article  Google Scholar 

  • Moss, L. S. (2008). Completeness theorems for syllogistic fragments. In S. Kepser & F. Hamm (Eds.), Logics for Linguistic Structures (pp. 143–174). Berlin-New York: de Gruyter.

    Google Scholar 

  • Moss, L. S. (2010). Logics for Natural Language Inference. Expanded version of lecture notes from a course at ESSLLI 2010. Retrieved from http://www.indiana.edu/iulg/moss/notes.pdf.

  • Nishihara, N., Morita, K., & Iwata, S. (1990). An extended syllogistic system with verbs and proper nouns, and its completeness proof. Systems and Computers in Japan 21(1), 96–111.

    Article  Google Scholar 

  • Orłowska, E. (1997). Studying incompleteness of information: A class of information logics. In K. Kijania-Placek & J. Woleński (Eds.), The Lvov-Warsaw School and Contemporary Philosophy (pp. 383–300).

    Google Scholar 

  • Pfeifer, N. (2006). Contemporary syllogistics: Comparative and quantitative syllogisms. In G. Krenzebauer & G. Doren (Eds.), Argumentation in Theorie und Praxis: Philosophie und Didaktik des Argumentierens. Vienna: LIT.

    Google Scholar 

  • Politzer, G. (2004). Some precursors of current theories of syllogistic reasoning. In K. Manktelow & C. Chung (Eds.), Psychology of Reasoning: Theoretical and Historical Perspectives. Hove: Psychology Press.

    Google Scholar 

  • Pratt-Hartmann, I. (2004). Fragments of language. Journal of Logic, Language and Information 13(2), 207–223.

    Article  Google Scholar 

  • Pratt-Hartmann, I. (2005). Complexity of the two-variable fragment with counting quantifiers. Journal of Logic, Language and Information 14(3), 369–395.

    Article  Google Scholar 

  • Pratt-Hartmann, I. (2009). No syllogisms for the numerical syllogistic. In O. Grumberg, M. Kaminski, S. Katz, & S.Wintner (Eds.), Languages: From Formal to Natural, Essays Dedicated to Nissim Francez on the Occasion of his 65th Birthday (Vol. 5533, pp. 192–203). Lecture Notes in Computer Science. Berlin: Springer.

    Chapter  Google Scholar 

  • Pratt-Hartmann, I. & Moss, L. S. (2009). Logics for the relational syllogistic. Review of Symbolic Logic 2(4), 647–683.

    Article  Google Scholar 

  • Pratt-Hartmann, I. & Third, A. (2006). More fragments of language. Notre Dame Journal of Formal Logic 47(2), 151–177.

    Article  Google Scholar 

  • Purdy, W. C. (1991). A logic for natural language. Notre Dame Journal of Formal Logic 32(3), 409–425.

    Article  Google Scholar 

  • Rayside, D. & Kontogiannis, K. (2001). On the syllogistic structure of objectoriented programming. In H. A. Müller, M. J. Harrold, & W. Schäfer (Eds.), Proceedings of the 23rd International Conference on Software Engineering, ICSE 2001 (pp. 113–122). Toronto: IEEE Computer Society.

    Google Scholar 

  • Rescher, N. (1964). Aristotle’s theory of modal syllogisms and its interpretation. In M. Bunge (Ed.), The Critical Approach to Science and Philosophy (pp. 152–177). New York: Free Press of Glencoe.

    Google Scholar 

  • Sahlqvist, H. (1975). Completeness and correspondence in the first- and second-order semantics for modal logic. In S. Kanger (Ed.), Proceedings of the 3rd Scandinavian Logic Smposium (pp. 110–143). Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Sambin, G. & Vaccaro, V. (1989). A new proof of Sahlqvist’s theorem on modal definability and completeness. Journal of Symbolic Logic 54(3), 992–999.

    Article  Google Scholar 

  • Shepherdson, J. C. (1956). On the interpretation of Aristotelian syllogistic. Journal of Symbolic Logic 21(2), 137–147.

    Article  Google Scholar 

  • Thorne, C. & Calvanese, D. (2009). The data complexity of the syllogistic fragments of English. In M. Aloni, H. Bastiaanse, T. de Jager, & K. Schulz (Eds.), Logic, Lnguage and Meaning – 17th Amsterdam Colloquium, Revised Selected Papers (Vol. 6042, pp. 114–123). Lecture Notes in Computer Science. Berlin: Springer.

    Chapter  Google Scholar 

  • van der Does, J. & van Eijck, J. (1996). Basic quantifier theory. In J. van der Does & J. van Eijck (Eds.), Quantifiers, Logic, and Language (pp. 1–45). Stanford: CSLI Publications.

    Google Scholar 

  • van Eijck, J. (2007). Natural logic for natural language. In B. ten Cate & H. Zeevat (Eds.), Logic, Language, and Computation, 6th International Tbilisi Symposium on Logic, Language, and Computation, TbiLLC, 2005 Revised Selected Papers (Vol. 4363, pp. 216–230). Lecture Notes in Computer Science. Batumi: Springer.

    Google Scholar 

  • Wedberg, A. (1948). The Aristotelian theory of classes. Ajatus 15, 299–314.

    Google Scholar 

  • Westerståhl, D. (1989). Aristotelian syllogisms and generalized quantifiers. Studia Logica 48(4), 577–585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimiter Vakarelov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vasilev, T., Vakarelov, D. (2018). Modal Syllogistic. In: Golińska-Pilarek, J., Zawidzki, M. (eds) Ewa Orłowska on Relational Methods in Logic and Computer Science. Outstanding Contributions to Logic, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-97879-6_11

Download citation

Publish with us

Policies and ethics