Skip to main content

Preservation of Quiescent Chronic Myelogenous Leukemia Stem Cells by the Bone Marrow Microenvironment

  • Chapter
  • First Online:
Biological Mechanisms of Minimal Residual Disease and Systemic Cancer

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1100))

Abstract

The majority of leukemia patients achieving remission ultimately relapse. Persistence of leukemia stem cells (LSC) capable of regenerating leukemia is a major cause of relapse. There is a pressing need to better understand mechanisms of LSC regulation and their resistance to therapy in order to improve outcomes for leukemia. Chronic myelogenous leukemia (CML) is a lethal myeloproliferative disorder that that is caused by hematopoietic stem cell (HSC) transformation by the BCR-ABL tyrosine kinase. Treatment with tyrosine kinase inhibitors (TKI) has revolutionized CML treatment, but fails to eliminate LSC responsible for propagating and regenerating leukemia. Therefore, patients require continued treatment to prevent relapse. Leukemic and normal stem cells share properties of quiescence and self-renewal, that are supported by bone marrow niches. Persistence of LSC after TKI treatment is related to tyrosine kinase independent mechanisms which include intrinsic properties of LSCs determined by epigenetic alterations, altered transcriptional regulatory networks or mitochondrial/metabolic changes. In addition to cell intrinsic changes, signals from the bone marrow microenvironment (BMM) play a critical role in protecting LSC from TKI treatment. Each type of alteration may offer potential points of intervention for therapeutic targeting of LSC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sawyers CL (1999) Chronic myeloid leukemia. N Engl J Med 340(17):1330–1340. PubMed PMID: 10219069

    Article  CAS  Google Scholar 

  2. Druker BJ, Guilhot F, O’Brien SG, Gathmann I, Kantarjian H, Gattermann N, Deininger MW, Silver RT, Goldman JM, Stone RM, Cervantes F, Hochhaus A, Powell BL, Gabrilove JL, Rousselot P, Reiffers J, Cornelissen JJ, Hughes T, Agis H, Fischer T, Verhoef G, Shepherd J, Saglio G, Gratwohl A, Nielsen JL, Radich JP, Simonsson B, Taylor K, Baccarani M, So C, Letvak L, Larson RA (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355(23):2408–2417. PubMed PMID: 17151364

    Article  CAS  Google Scholar 

  3. Chu S, McDonald T, Lin A, Chakraborty S, Huang Q, Snyder DS, Bhatia R (2011) Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment. Blood. Epub 2011/09/21. doi:blood-2010-12-327437 [pii] 10.1182/blood-2010-12-327437. PubMed PMID: 21931114

    Google Scholar 

  4. Chu S, Holtz M, Gupta M, Bhatia R (2004) BCR/ABL kinase inhibition by imatinib mesylate enhances MAP kinase activity in chronic myelogenous leukemia CD34+ cells. Blood 103(8):3167–3174. PubMed PMID: 15070699

    Article  CAS  Google Scholar 

  5. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ (2011) Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 121(1):396–409. PubMed PMID: 21157039

    Article  CAS  Google Scholar 

  6. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, Holyoake TL (2002) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99(1):319–325. PubMed PMID: 11756187

    Article  CAS  Google Scholar 

  7. Holtz MS, Slovak ML, Zhang F, Sawyers CL, Forman SJ, Bhatia R (2002) Imatinib mesylate (STI571) inhibits growth of primitive malignant progenitors in chronic myelogenous leukemia through reversal of abnormally increased proliferation. Blood 99(10):3792–3800. PubMed PMID: 11986238

    Article  CAS  Google Scholar 

  8. Zhang B, Li M, McDonald T, Holyoake TL, Moon RT, Campana D, Shultz L, Bhatia R (2013) Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-beta-catenin signaling. Blood 121(10):1824–1838. https://doi.org/10.1182/blood-2012-02-412890. PubMed PMID: 23299311; PMCID: PMC3591802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bhatia R (2017) Novel approaches to therapy in CML. Hematol Am Soc Hematol Educ Program 2017(1):115–120. Epub 2017/12/10. https://doi.org/10.1182/asheducation-2017.1.115. PubMed PMID: 29222245

    Google Scholar 

  10. Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F, Legros L, Charbonnier A, Guerci A, Varet B, Etienne G, Reiffers J, Rousselot P (2010) Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. Lancet Oncol 11(11):1029–1035. PubMed PMID: 20965785

    Article  CAS  Google Scholar 

  11. Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT, Dang P, Goyne JM, Slader C, Filshie RJ, Mills AK, Melo JV, White DL, Grigg AP, Hughes TP (2013) Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood 122(4):515–522. https://doi.org/10.1182/blood-2013-02-483750. PubMed PMID: 23704092

    Article  CAS  PubMed  Google Scholar 

  12. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1-2):7–25. Epub 1978/01/01. PubMed PMID: 747780

    CAS  Google Scholar 

  13. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334. https://doi.org/10.1038/nature12984. PubMed PMID: 24429631; PMCID: PMC4514480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mansour A, Abou-Ezzi G, Sitnicka E, Jacobsen SE, Wakkach A, Blin-Wakkach C (2012) Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow. J Exp Med 209(3):537–549. Epub 2012/02/22. https://doi.org/10.1084/jem.20110994. PubMed PMID: 22351931; PMCID: PMC3302238

    Article  CAS  Google Scholar 

  15. Visnjic D, Kalajzic Z, Rowe DW, Katavic V, Lorenzo J, Aguila HL (2004) Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103(9):3258–3264. Epub 2004/01/17. https://doi.org/10.1182/blood-2003-11-4011. PubMed PMID: 14726388

    Article  CAS  Google Scholar 

  16. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, Bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846. Epub 2003/10/24. https://doi.org/10.1038/nature02040. PubMed PMID: 14574413

    Article  CAS  Google Scholar 

  17. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Feng JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841. Epub 2003/10/24. https://doi.org/10.1038/nature02041. PubMed PMID: 14574412

    Article  CAS  Google Scholar 

  18. Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh GY, Suda T (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2):149–161. Epub 2004/07/21. https://doi.org/10.1016/j.cell.2004.07.004. PubMed PMID: 15260986

    Article  CAS  Google Scholar 

  19. Nilsson SK, Johnston HM, Whitty GA, Williams B, Webb RJ, Denhardt DT, Bertoncello I, Bendall LJ, Simmons PJ, Haylock DN (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106(4):1232–1239. Epub 2005/04/23. https://doi.org/10.1182/blood-2004-11-4422. PubMed PMID: 15845900

    Article  CAS  Google Scholar 

  20. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, Nagasawa T, Link DC (2013) CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature 495(7440):227–230. https://doi.org/10.1038/nature11926. PubMed PMID: 23434756; PMCID: PMC3600148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440):231–235. https://doi.org/10.1038/nature11885. PubMed PMID: 23434755; PMCID: PMC3600153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834. Epub 2010/08/13. https://doi.org/10.1038/nature09262. PubMed PMID: 20703299; PMCID: PMC3146551

    Article  CAS  Google Scholar 

  23. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421. Epub 2006/01/28. https://doi.org/10.1016/j.cell.2005.10.041. PubMed PMID: 16439213

    Article  CAS  Google Scholar 

  24. Kunisaki Y, Bruns I, Scheiermann C, Ahmed J, Pinho S, Zhang D, Mizoguchi T, Wei Q, Lucas D, Ito K, Mar JC, Bergman A, Frenette PS (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502(7473):637–643. Epub 2013/10/11. https://doi.org/10.1038/nature12612. PubMed PMID: 24107994; PMCID: PMC3821873

    Article  CAS  Google Scholar 

  25. Sugiyama T, Kohara H, Noda M, Nagasawa T (2006) Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 25(6):977–988. Epub 2006/12/19. doi:S1074-7613(06)00515-2 [pii]10.1016/j.immuni.2006.10.016. PubMed PMID: 17174120

    Article  CAS  Google Scholar 

  26. Omatsu Y, Sugiyama T, Kohara H, Kondoh G, Fujii N, Kohno K, Nagasawa T (2010) The essential functions of adipo-osteogenic progenitors as the hematopoietic stem and progenitor cell niche. Immunity 33(3):387–399. Epub 2010/09/21. https://doi.org/10.1016/j.immuni.2010.08.017. PubMed PMID: 20850355

    Article  CAS  Google Scholar 

  27. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462. https://doi.org/10.1038/nature10783. PubMed PMID: 22281595; PMCID: PMC3270376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Winkler IG, Barbier V, Nowlan B, Jacobsen RN, Forristal CE, Patton JT, Magnani JL, Levesque JP (2012) Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance. Nat Med 18(11):1651–1657. Epub 2012/10/23. https://doi.org/10.1038/nm.2969. PubMed PMID: 23086476

    Article  CAS  Google Scholar 

  29. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147(5):1146–1158. Epub 2011/11/29. https://doi.org/10.1016/j.cell.2011.09.053. PubMed PMID: 22118468

    Article  CAS  Google Scholar 

  30. Lucas D, Scheiermann C, Chow A, Kunisaki Y, Bruns I, Barrick C, Tessarollo L, Frenette PS (2013) Chemotherapy-induced bone marrow nerve injury impairs hematopoietic regeneration. Nat Med 19(6):695–703. Epub 2013/05/07. https://doi.org/10.1038/nm.3155. PubMed PMID: 23644514; PMCID: PMC3964478

    Article  CAS  Google Scholar 

  31. Miyamoto T (2013) Role of osteoclasts in regulating hematopoietic stem and progenitor cells. World J Orthop 4(4):198–206. Epub 2013/10/23. https://doi.org/10.5312/wjo.v4.i4.198. PubMed PMID: 24147255; PMCID: PMC3801239

    Article  Google Scholar 

  32. Lymperi S, Ersek A, Ferraro F, Dazzi F, Horwood NJ (2011) Inhibition of osteoclast function reduces hematopoietic stem cell numbers in vivo. Blood 117(5):1540–1549. Epub 2010/12/07. https://doi.org/10.1182/blood-2010-05-282855. PubMed PMID: 21131587

    Article  CAS  Google Scholar 

  33. Adams GB, Martin RP, Alley IR, Chabner KT, Cohen KS, Calvi LM, Kronenberg HM, Scadden DT (2007) Therapeutic targeting of a stem cell niche. Nat Biotechnol 25(2):238–243. Epub 2007/01/24. https://doi.org/10.1038/nbt1281. PubMed PMID: 17237769

    Article  CAS  Google Scholar 

  34. Fujisaki J, Wu J, Carlson AL, Silberstein L, Putheti P, Larocca R, Gao W, Saito TI, Lo Celso C, Tsuyuzaki H, Sato T, Cote D, Sykes M, Strom TB, Scadden DT, Lin CP (2011) In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474(7350):216–219. Epub 2011/06/10. https://doi.org/10.1038/nature10160. PubMed PMID: 21654805; PMCID: PMC3725645

    Article  CAS  Google Scholar 

  35. Hirata Y, Furuhashi K, Ishii H, Li HW, Pinho S, Ding L, Robson SC, Frenette PS, Fujisaki J (2018) CD150(high) bone marrow tregs maintain hematopoietic stem cell quiescence and immune privilege via adenosine. Cell Stem Cell 22(3):445–53 e5. Epub 2018/02/20. https://doi.org/10.1016/j.stem.2018.01.017. PubMed PMID: 29456159

    Article  CAS  Google Scholar 

  36. Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann C, Battista M, Leboeuf M, Prophete C, van Rooijen N, Tanaka M, Merad M, Frenette PS (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208(2):261–271. Epub 2011/02/02. https://doi.org/10.1084/jem.20101688. PubMed PMID: 21282381; PMCID: PMC3039855

    Article  CAS  Google Scholar 

  37. Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, Scheiermann C, Schiff L, Poncz M, Bergman A, Frenette PS (2014) Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 20(11):1315–1320. Epub 2014/10/20. https://doi.org/10.1038/nm.3707. PubMed PMID: 25326802; PMCID: PMC4258871

    Article  CAS  Google Scholar 

  38. Gordon MY, Dowding CR, Riley GP, Goldman JM, Greaves MF (1987) Altered adhesive interactions with marrow stroma of haematopoietic progenitor cells in chronic myeloid leukaemia. Nature 328(6128):342–344. Epub 1987/07/23. https://doi.org/10.1038/328342a0. PubMed PMID: 3474529

    Article  CAS  Google Scholar 

  39. Krause DS, Fulzele K, Catic A, Sun CC, Dombkowski D, Hurley MP, Lezeau S, Attar E, Wu JY, Lin HY, Divieti-Pajevic P, Hasserjian RP, Schipani E, Van Etten RA, Scadden DT (2013) Differential regulation of myeloid leukemias by the bone marrow microenvironment. Nat Med 19(11):1513–1517. Epub 2013/10/29. https://doi.org/10.1038/nm.3364. PubMed PMID: 24162813; PMCID: PMC3827980

    Article  CAS  Google Scholar 

  40. Lane SW, Wang YJ, Lo Celso C, Ragu C, Bullinger L, Sykes SM, Ferraro F, Shterental S, Lin CP, Gilliland DG, Scadden DT, Armstrong SA, Williams DA (2011) Differential niche and Wnt requirements during acute myeloid leukemia progression. Blood 118(10):2849–2856. Epub 2011/07/19. https://doi.org/10.1182/blood-2011-03-345165. PubMed PMID: 21765021; PMCID: PMC3172801

    Article  CAS  Google Scholar 

  41. Krause DS, Lazarides K, von Andrian UH, Van Etten RA (2006) Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med 12(10):1175–1180. PubMed PMID: 16998483

    Article  CAS  Google Scholar 

  42. Krause DS, Lazarides K, Lewis JB, von Andrian UH, Van Etten RA (2014) Selectins and their ligands are required for homing and engraftment of BCR-ABL1+ leukemic stem cells in the bone marrow niche. Blood 123(9):1361–1371. Epub 2014/01/08. https://doi.org/10.1182/blood-2013-11-538694. PubMed PMID: 24394666; PMCID: PMC3938148

    Article  CAS  Google Scholar 

  43. Colmone A, Amorim M, Pontier AL, Wang S, Jablonski E, Sipkins DA (2008) Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells. Science (New York, NY) 322(5909):1861–1865. Epub 2008/12/20. https://doi.org/10.1126/science.1164390. PubMed PMID: 19095944

    Article  CAS  Google Scholar 

  44. Zhou Q, Bucher C, Munger ME, Highfill SL, Tolar J, Munn DH, Levine BL, Riddle M, June CH, Vallera DA, Weigel BJ, Blazar BR (2009) Depletion of endogenous tumor-associated regulatory T cells improves the efficacy of adoptive cytotoxic T-cell immunotherapy in murine acute myeloid leukemia. Blood 114(18):3793–3802. Epub 2009/09/03. https://doi.org/10.1182/blood-2009-03-208181. PubMed PMID: 19724059; PMCID: PMC2773484

    Article  CAS  Google Scholar 

  45. Zhang B, Ho YW, Huang Q, Maeda T, Lin A, Lee SU, Hair A, Holyoake TL, Huettner C, Bhatia R (2012) Altered microenvironmental regulation of leukemic and normal stem cells in chronic myelogenous leukemia. Cancer Cell 21(4):577–592. https://doi.org/10.1016/j.ccr.2012.02.018. PubMed PMID: 22516264; PMCID: 3332001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T, Wagers AJ, Hsiao EC, Passegue E (2013) Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13(3):285–299. https://doi.org/10.1016/j.stem.2013.06.009. PubMed PMID: 23850243; PMCID: 3769504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shiozawa Y, Taichman RS (2010) Dysfunctional niches as a root of hematopoietic malignancy. Cell Stem Cell 6(5):399–400. https://doi.org/10.1016/j.stem.2010.04.004. PubMed PMID: 20452309

    Article  CAS  PubMed  Google Scholar 

  48. Raaijmakers MH, Mukherjee S, Guo S, Zhang S, Kobayashi T, Schoonmaker JA, Ebert BL, Al-Shahrour F, Hasserjian RP, Scadden EO, Aung Z, Matza M, Merkenschlager M, Lin C, Rommens JM, Scadden DT (2010) Bone progenitor dysfunction induces myelodysplasia and secondary leukaemia. Nature 464(7290):852–857. https://doi.org/10.1038/nature08851. PubMed PMID: 20305640; PMCID: 3422863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Walkley CR, Olsen GH, Dworkin S, Fabb SA, Swann J, McArthur GA, Westmoreland SV, Chambon P, Scadden DT, Purton LE (2007) A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 129(6):1097–1110. https://doi.org/10.1016/j.cell.2007.05.014. PubMed PMID: 17574023; PMCID: 1974882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Walkley CR, Shea JM, Sims NA, Purton LE, Orkin SH (2007) Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129(6):1081–1095. https://doi.org/10.1016/j.cell.2007.03.055. PubMed PMID: 17574022; PMCID: 2768301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim YW, Koo BK, Jeong HW, Yoon MJ, Song R, Shin J, Jeong DC, Kim SH, Kong YY (2008) Defective Notch activation in microenvironment leads to myeloproliferative disease. Blood 112(12):4628–4638. https://doi.org/10.1182/blood-2008-03-148999. PubMed PMID: 18818392

    Article  CAS  PubMed  Google Scholar 

  52. Matsunaga T, Takemoto N, Sato T, Takimoto R, Tanaka I, Fujimi A, Akiyama T, Kuroda H, Kawano Y, Kobune M, Kato J, Hirayama Y, Sakamaki S, Kohda K, Miyake K, Niitsu Y (2003) Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Nat Med 9(9):1158–1165. Epub 2003/08/05. https://doi.org/10.1038/nm909. PubMed PMID: 12897778

    Article  CAS  Google Scholar 

  53. Voermans C, van Heese WP, de Jong I, Gerritsen WR, van Der Schoot CE (2002) Migratory behavior of leukemic cells from acute myeloid leukemia patients. Leukemia 16(4):650–657. Epub 2002/04/18. https://doi.org/10.1038/sj.leu.2402431. PubMed PMID: 11960346

    Article  CAS  Google Scholar 

  54. Luis TC, Naber BA, Roozen PP, Brugman MH, de Haas EF, Ghazvini M, Fibbe WE, van Dongen JJ, Fodde R, Staal FJ (2011) Canonical wnt signaling regulates hematopoiesis in a dosage-dependent fashion. Cell Stem Cell 9(4):345–356. Epub 2011/10/11. https://doi.org/10.1016/j.stem.2011.07.017. PubMed PMID: 21982234

    Article  CAS  Google Scholar 

  55. Minami Y, Stuart SA, Ikawa T, Jiang Y, Banno A, Hunton IC, Young DJ, Naoe T, Murre C, Jamieson CH, Wang JY (2008) BCR-ABL-transformed GMP as myeloid leukemic stem cells. Proc Natl Acad Sci U S A 105(46):17967–17972. PubMed PMID: 19004799

    Article  CAS  Google Scholar 

  56. Jamieson CH, Ailles LE, Dylla SJ, Muijtjens M, Jones C, Zehnder JL, Gotlib J, Li K, Manz MG, Keating A, Sawyers CL, Weissman IL (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351(7):657–667. PubMed PMID: 15306667

    Article  CAS  Google Scholar 

  57. Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM, Lagoo A, Reya T (2007) Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 12(6):528–541. Epub 2007/12/11. doi:S1535-6108(07)00334-0 [pii]10.1016/j.ccr.2007.11.003. PubMed PMID: 18068630; PMCID: 2262869.

    Article  CAS  Google Scholar 

  58. Hu Y, Chen Y, Douglas L, Li S (2009) beta-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia 23(1):109–116. Epub 2008/09/27. https://doi.org/10.1038/leu.2008.262. PubMed PMID: 18818703

    Article  CAS  Google Scholar 

  59. Heidel FH, Bullinger L, Feng Z, Wang Z, Neff TA, Stein L, Kalaitzidis D, Lane SW, Armstrong SA (2012) Genetic and pharmacologic inhibition of beta-catenin targets imatinib-resistant leukemia stem cells in CML. Cell Stem Cell 10(4):412–424. Epub 2012/04/10. doi:S1934-5909(12)00076-8 [pii]10.1016/j.stem.2012.02.017. PubMed PMID: 22482506; PMCID: 3339412

    Article  CAS  Google Scholar 

  60. Coluccia AM, Vacca A, Dunach M, Mologni L, Redaelli S, Bustos VH, Benati D, Pinna LA, Gambacorti-Passerini C (2007) Bcr-Abl stabilizes beta-catenin in chronic myeloid leukemia through its tyrosine phosphorylation. EMBO J 26(5):1456–1466. Epub 2007/02/24. doi:7601485 [pii]10.1038/sj.emboj.7601485. PubMed PMID: 17318191; PMCID: 1817619

    Article  CAS  Google Scholar 

  61. Samanta AK, Lin H, Sun T, Kantarjian H, Arlinghaus RB (2006) Janus kinase 2: a critical target in chronic myelogenous leukemia. Cancer Res 66(13):6468–6472. PubMed PMID: 16818614

    Article  CAS  Google Scholar 

  62. Gao J, Graves S, Koch U, Liu S, Jankovic V, Buonamici S, El Andaloussi A, Nimer SD, Kee BL, Taichman R, Radtke F, Aifantis I (2009) Hedgehog signaling is dispensable for adult hematopoietic stem cell function. Cell Stem Cell 4(6):548–558. https://doi.org/10.1016/j.stem.2009.03.015. PubMed PMID: 19497283; PMCID: 2914688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Hofmann I, Stover EH, Cullen DE, Mao J, Morgan KJ, Lee BH, Kharas MG, Miller PG, Cornejo MG, Okabe R, Armstrong SA, Ghilardi N, Gould S, de Sauvage FJ, McMahon AP, Gilliland DG (2009) Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis. Cell Stem Cell 4(6):559–567. https://doi.org/10.1016/j.stem.2009.03.016. PubMed PMID: 19497284; PMCID: 3065323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dierks C, Beigi R, Guo GR, Zirlik K, Stegert MR, Manley P, Trussell C, Schmitt-Graeff A, Landwerlin K, Veelken H, Warmuth M (2008) Expansion of Bcr-Abl-positive leukemic stem cells is dependent on Hedgehog pathway activation. Cancer Cell 14(3):238–249. Epub 2008/09/06. doi:S1535-6108(08)00257-2 [pii]10.1016/j.ccr.2008.08.003. PubMed PMID: 18772113

    Article  CAS  Google Scholar 

  65. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, Kwon HY, Kim J, Chute JP, Rizzieri D, Munchhof M, VanArsdale T, Beachy PA, Reya T (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458(7239):776–779. https://doi.org/10.1038/nature07737. PubMed PMID: 19169242; PMCID: 2946231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Irvine DA, Copland M (2012) Targeting hedgehog in hematologic malignancy. Blood 119(10):2196–2204. https://doi.org/10.1182/blood-2011-10-383752. PubMed PMID: 22223823

    Article  CAS  PubMed  Google Scholar 

  67. Evans AG, Calvi LM (2015) Notch signaling in the malignant bone marrow microenvironment: implications for a niche-based model of oncogenesis. Ann N Y Acad Sci 1335(1):63–77. https://doi.org/10.1111/nyas.12562. PubMed PMID: 25351294; PMCID: 4289406

    Article  CAS  PubMed  Google Scholar 

  68. Agarwal P, Zhang B, Ho Y, Cook A, Li L, Mikhail FM, Wang Y, McLaughlin ME, Bhatia R (2017) Enhanced targeting of CML stem and progenitor cells by inhibition of porcupine acyltransferase in combination with TKI. Blood 129(8):1008–1020. Epub 2016/12/25. https://doi.org/10.1182/blood-2016-05-714089. PubMed PMID: 28011678; PMCID: PMC5324714

    Article  CAS  Google Scholar 

  69. Carter BZ, Mak PY, Mak DH, Ruvolo VR, Schober W, McQueen T, Cortes J, Kantarjian HM, Champlin RE, Konopleva M, Andreeff M (2015) Synergistic effects of p53 activation via MDM2 inhibition in combination with inhibition of Bcl-2 or Bcr-Abl in CD34+ proliferating and quiescent chronic myeloid leukemia blast crisis cells. Oncotarget 6(31):30487–30499. Epub 2015/10/03. https://doi.org/10.18632/oncotarget.5890. PubMed PMID: 26431162; PMCID: PMC4741546

    Article  Google Scholar 

  70. Li L, Wang L, Li L, Wang Z, Ho Y, McDonald T, Holyoake TL, Chen W, Bhatia R (2012) Activation of p53 by SIRT1 inhibition enhances elimination of CML leukemia stem cells in combination with imatinib. Cancer Cell 21(2):266–281. https://doi.org/10.1016/j.ccr.2011.12.020. PubMed PMID: 22340598; PMCID: PMC3285436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Abraham SA, Hopcroft LE, Carrick E, Drotar ME, Dunn K, Williamson AJ, Korfi K, Baquero P, Park LE, Scott MT, Pellicano F, Pierce A, Copland M, Nourse C, Grimmond SM, Vetrie D, Whetton AD, Holyoake TL (2016) Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature 534(7607):341–346. Epub 2016/06/10. https://doi.org/10.1038/nature18288. PubMed PMID: 27281222; PMCID: PMC4913876

    Article  Google Scholar 

  72. Zhang B, Strauss AC, Chu S, Li M, Ho Y, Shiang KD, Snyder DS, Huettner CS, Shultz L, Holyoake T, Bhatia R (2010) Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell 17(5):427–442. Epub 2010/05/19. doi:S1535-6108(10)00102-9 [pii]10.1016/j.ccr.2010.03.011. PubMed PMID: 20478526; PMCID: PMC2873971

    Article  Google Scholar 

  73. Scott MT, Korfi K, Saffrey P, Hopcroft LE, Kinstrie R, Pellicano F, Guenther C, Gallipoli P, Cruz M, Dunn K, Jorgensen HG, Cassels JE, Hamilton A, Crossan A, Sinclair A, Holyoake TL, Vetrie D (2016) Epigenetic reprogramming sensitizes CML stem cells to combined EZH2 and tyrosine kinase inhibition. jCancer Discov 6(11):1248–1257. Epub 2016/11/04. https://doi.org/10.1158/2159-8290.CD-16-0263. PubMed PMID: 27630125

    Article  Google Scholar 

  74. Gallipoli P, Cook A, Rhodes S, Hopcroft L, Wheadon H, Whetton AD, Jorgensen HG, Bhatia R, Holyoake TL (2014) JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo. Blood 124(9):1492–1501. https://doi.org/10.1182/blood-2013-12-545640. PubMed PMID: 24957147; PMCID: PMC4148771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Neviani P, Harb JG, Oaks JJ, Santhanam R, Walker CJ, Ellis JJ, Ferenchak G, Dorrance AM, Paisie CA, Eiring AM, Ma Y, Mao HC, Zhang B, Wunderlich M, May PC, Sun C, Saddoughi SA, Bielawski J, Blum W, Klisovic RB, Solt JA, Byrd JC, Volinia S, Cortes J, Huettner CS, Koschmieder S, Holyoake TL, Devine S, Caligiuri MA, Croce CM, Garzon R, Ogretmen B, Arlinghaus RB, Chen CS, Bittman R, Hokland P, Roy DC, Milojkovic D, Apperley J, Goldman JM, Reid A, Mulloy JC, Bhatia R, Marcucci G, Perrotti D (2013) PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells. J Clin Invest 123(10):4144–4157. Epub 2013/09/04. https://doi.org/10.1172/JCI68951. PubMed PMID: 23999433; PMCID: PMC3784537

    Article  CAS  Google Scholar 

  76. Gallipoli P, Pellicano F, Morrison H, Laidlaw K, Allan EK, Bhatia R, Copland M, Jorgensen HG, Holyoake TL (2013) Autocrine TNF-alpha production supports CML stem and progenitor cell survival and enhances their proliferation. Blood 122(19):3335–3339. https://doi.org/10.1182/blood-2013-02-485607. PubMed PMID: 24041577; PMCID: 3953090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhang B, Chu S, Agarwal P, Campbell VL, Hopcroft L, Jorgensen HG, Lin A, Gaal K, Holyoake TL, Bhatia R (2016) Inhibition of interleukin-1 signaling enhances elimination of tyrosine kinase inhibitor treated CML stem cells. Blood. https://doi.org/10.1182/blood-2015-11-679928. PubMed PMID: 27621307

    Article  CAS  Google Scholar 

  78. Jaras M, Johnels P, Hansen N, Agerstam H, Tsapogas P, Rissler M, Lassen C, Olofsson T, Bjerrum OW, Richter J, Fioretos T (2010) Isolation and killing of candidate chronic myeloid leukemia stem cells by antibody targeting of IL-1 receptor accessory protein. Proc Natl Acad Sci U S A 107(37):16280–16285. Epub 2010/09/02. doi:1004408107 [pii]10.1073/pnas.1004408107. PubMed PMID: 20805474; PMCID: PMC2941341

    Article  CAS  Google Scholar 

  79. Irvine DA, Zhang B, Kinstrie R, Tarafdar A, Morrison H, Campbell VL, Moka HA, Ho Y, Nixon C, Manley PW, Wheadon H, Goodlad JR, Holyoake TL, Bhatia R, Copland M (2016) Deregulated hedgehog pathway signaling is inhibited by the smoothened antagonist LDE225 (Sonidegib) in chronic phase chronic myeloid leukaemia. Sci Rep 6:25476. https://doi.org/10.1038/srep25476. PubMed PMID: 27157927; PMCID: PMC4860619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12(10):1167–1174. Epub 2006/09/26. https://doi.org/10.1038/nm1483. PubMed PMID: 16998484

    Article  Google Scholar 

  81. Carter BZ, Mak PY, Mu H, Zhou H, Mak DH, Schober W, Leverson JD, Zhang B, Bhatia R, Huang X, Cortes J, Kantarjian H, Konopleva M, Andreeff M (2016) Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med 8(355):355ra117. Epub 2016/09/09. https://doi.org/10.1126/scitranslmed.aag1180. PubMed PMID: 27605552; PMCID: PMC5111086

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Bhatia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, M., Bhatia, R. (2018). Preservation of Quiescent Chronic Myelogenous Leukemia Stem Cells by the Bone Marrow Microenvironment. In: Aguirre-Ghiso, J. (eds) Biological Mechanisms of Minimal Residual Disease and Systemic Cancer. Advances in Experimental Medicine and Biology, vol 1100. Springer, Cham. https://doi.org/10.1007/978-3-319-97746-1_6

Download citation

Publish with us

Policies and ethics