Skip to main content

Cardiac Extracellular Matrix Modification as a Therapeutic Approach

  • Chapter
  • First Online:
Cardiac Extracellular Matrix

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1098))

Abstract

The cardiac extracellular matrix (cECM) is comprised of proteins and polysaccharides secreted by cardiac cell types, which provide structural and biochemical support to cardiovascular tissue. The roles of cECM proteins and the associated family of cell surface receptor, integrins, have been explored in vivo via the generation of knockout experimental animal models. However, the complexity of tissues makes it difficult to isolate the effects of individual cECM proteins on a particular cell process or disease state. The desire to further dissect the role of cECM has led to the development of a variety of in vitro model systems, which are now being used not only for basic studies but also for testing drug efficacy and toxicity and for generating therapeutic scaffolds. These systems began with 2D coatings of cECM derived from tissue and have developed to include recombinant ECM proteins, ECM fragments, and ECM mimics. Most recently 3D model systems have emerged, made possible by several developing technologies including, and most notably, 3D bioprinting. This chapter will attempt to track the evolution of our understanding of the relationship between cECM and cell behavior from in vivo model to in vitro control systems. We end the chapter with a summary of how basic studies such as these have informed the use of cECM as a direct therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mienaltowski MJ, Birk DE. Structure, physiology, and biochemistry of collagens. Dordrecht: Springer; 2014. p. 5–29. Available from: http://link.springer.com/10.1007/978-94-007-7893-1_2

    Google Scholar 

  2. Hanson KP, Jung JP, Tran QA, Hsu S-PP, Iida R, Ajeti V, et al. Spatial and temporal analysis of extracellular matrix proteins in the developing murine heart: a blueprint for regeneration. Tissue Eng Part A. 2013;19(9–10):1132–43. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23273220

    Article  CAS  Google Scholar 

  3. Marijianowski MMH, van der Loos CM, Mohrschladt MF, Becker AE. The neonatal heart has a relatively high content of total collagen and type I collagen, a condition that may explain the less compliant state. J Am Coll Cardiol. 1994;23(5):1204–8. Available from: http://linkinghub.elsevier.com/retrieve/pii/0735109794906122

    Article  CAS  Google Scholar 

  4. Omens JH, Fung YC, Becker KD, McBride DJ, Omens JH, McCulloch AD. Myocardial mechanics and collagen structure in the Osteogenesis Imperfecta murine (oim). Circ Res. 1990;66(1):37–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/2295143

    Article  CAS  Google Scholar 

  5. Hofmann U, Bonz A, Frantz S, Hu K, Waller C, Roemer K, et al. A collagen α2(I) mutation impairs healing after experimental myocardial infarction. Am J Pathol. 2012;180(1):113–22. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0002944011009266

    Article  CAS  Google Scholar 

  6. Sansilvestri-Morel P, Rupin A, Jaisson S, Fabiani J-N, Verbeuren TJ, Vanhoutte PM. Synthesis of collagen is dysregulated in cultured fibroblasts derived from skin of subjects with varicose veins as it is in venous smooth muscle cells. Circulation. 2002;106(4):479–83. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12135949

    Article  CAS  Google Scholar 

  7. Malfait F, Symoens S, Goemans N, Gyftodimou Y, Holmberg E, López-González V, et al. Helical mutations in type I collagen that affect the processing of the amino-propeptide result in an Osteogenesis Imperfecta/Ehlers-Danlos Syndrome overlap syndrome. Orphanet J Rare Dis. 2013;8:78. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23692737

    Article  Google Scholar 

  8. Cameron GJ, Alberts IL, Laing JH, Wess TJ. Structure of type I and type III heterotypic collagen fibrils: an X-ray diffraction study. J Struct Biol. 2002;137(1–2):15–22. Available from: https://ac.els-cdn.com/S104784770294459X/1-s2.0-S104784770294459X-main.pdf?_tid=e6fe778c-a483-11e7-a4f1-00000aab0f27&acdnat=1506627396_64c77199a25fa903418103d2fc666d66

    Article  CAS  Google Scholar 

  9. Katz AM, Editor G, Weber KT, Chicago F. Basic concepts in cardiology cardiac interstitium in health and disease: the fibrillar collagen network. JACC. 1989;13(7):1637–52. Available from: https://ac.els-cdn.com/0735109789903604/1-s2.0-0735109789903604-main.pdf?_tid=589b9f52-a487-11e7-8073-00000aacb360&acdnat=1506628867_79e2ea81848b5dd69515ed5181463003

    Article  Google Scholar 

  10. Akhtar S, Meek KM, James V. Immunolocalization of elastin, collagen type I and type III, fibronectin, and vitronectin in extracellular matrix components of normal and myxomatous mitral heart valve chordae tendineae. Cardiovasc Pathol. 1999;8(4):203–11. Available from: http://www.sciencedirect.com/science/article/pii/S1054880799000034?via%3Dihub

    Article  CAS  Google Scholar 

  11. Liu X, Wu H, Byrne M, Krane S, Jaenisch R. Type III collagen is crucial for collagen I fibrillogenesis and for normal cardiovascular development. Proc Natl Acad Sci U S A. 1997;94(5):1852–6. Available from: http://www.ncbi.nlm.nih.gov/pubmed/9050868

    Article  CAS  Google Scholar 

  12. Shalhub S, Black JH, Cecchi AC, Xu Z, Griswold BF, Safi HJ, et al. Molecular diagnosis in vascular Ehlers-Danlos syndrome predicts pattern of arterial involvement and outcomes. J Vasc Surg. 2014;60(1):160–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24650746

    Article  Google Scholar 

  13. Limon-Miranda S, Salazar-Enriquez DG, Muñiz J, Ramirez-Archila MV, Sanchez-Pastor EA, Andrade F, et al. Pregnancy differentially regulates the collagens types I and III in left ventricle from rat heart. Biomed Res Int. 2014;2014:984785. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25147829

    Article  Google Scholar 

  14. Germain S, Monnot C, Muller L, Eichmann A. Hypoxia-driven angiogenesis: role of tip cells and extracellular matrix scaffolding. Curr Opin Hematol. 2010;17(3):245–51. Available from: https://insights.ovid.com/pubmed?pmid=20308893

    CAS  PubMed  Google Scholar 

  15. Khoshnoodi J, Pedchenko V, Hudson BG. Mammalian collagen IV. Microsc Res Tech. 2008;71(5):357–70. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18219669

    Article  CAS  Google Scholar 

  16. Pöschl E, Schlötzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development. 2004;131(7). Available from: http://dev.biologists.org/content/131/7/1619.long

    Article  Google Scholar 

  17. Mao Y, Schwarzbauer JE. Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol. 2005;24(6):389–99. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0945053X05000855

    Article  CAS  Google Scholar 

  18. George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO. Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development. 1993;119(4). Available from: http://dev.biologists.org/content/119/4/1079.long

  19. Konstandin MH, Toko H, Gastelum GM, Quijada P, De La Torre A, Quintana M, et al. Fibronectin is essential for reparative cardiac progenitor cell response after myocardial infarction. Circ Res. 2013;113(2):115–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23652800

    Article  CAS  Google Scholar 

  20. Yang JT, Bader BL, Kreidberg JA, Ullman-Culleré M, Trevithick JE, Hynes RO. Overlapping and independent functions of fibronectin receptor Integrins in early mesodermal development. Dev Biol. 1999;215(2):264–77. Available from: http://www.sciencedirect.com/science/article/pii/S0012160699994514

    Article  CAS  Google Scholar 

  21. Chen D, Wang X, Liang D, Gordon J, Mittal A, Manley N, et al. Fibronectin signals through integrin α5β1 to regulate cardiovascular development in a cell type-specific manner. Dev Biol. 2015;407(2):195–210. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26434918

    Article  CAS  Google Scholar 

  22. Turner NA. Inflammatory and fibrotic responses of cardiac fibroblasts to myocardial damage associated molecular patterns (DAMPs). J Mol Cell Cardiol. 2016;94:189–200. Available from: https://www.sciencedirect.com/science/article/pii/S0022282815301073?via%3Dihub#bb0005

    Article  CAS  Google Scholar 

  23. Wagenseil JE, Ciliberto CH, Knutsen RH, Levy MA, Kovacs A, Mecham RP. The importance of elastin to aortic development in mice. Am J Physiol Heart Circ Physiol. 2010;299(2):H257–64. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20495146

    Article  CAS  Google Scholar 

  24. Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, et al. Elastin is an essential determinant of arterial morphogenesis. Nature. 1998;393(6682):276–80. Available from: http://www.nature.com/doifinder/10.1038/30522

    Article  CAS  Google Scholar 

  25. Wagenseil JE, Knutsen RH, Li DY, Mecham RP. Elastin-insufficient mice show normal cardiovascular remodeling in 2K1C hypertension despite higher baseline pressure and unique cardiovascular architecture. Am J Physiol Heart Circ Physiol. 2007;293(1). Available from: http://ajpheart.physiology.org/content/293/1/H574.long

    Article  CAS  Google Scholar 

  26. Durbeej M. Laminins. Cell Tissue Res. 2010;339(1):259–68. Available from: http://link.springer.com/10.1007/s00441-009-0838-2

    Article  CAS  Google Scholar 

  27. Ichikawa-Tomikawa N, Ogawa J, Douet V, Xu Z, Kamikubo Y, Sakurai T, et al. Laminin α1 is essential for mouse cerebellar development. Matrix Biol. 2012;31(1):17–28. Available from: http://www.sciencedirect.com/science/article/pii/S0945053X11000904

    Article  CAS  Google Scholar 

  28. Thyboll J, Kortesmaa J, Cao R, Soininen R, Wang L, Iivanainen A, et al. Deletion of the laminin alpha4 chain leads to impaired microvessel maturation. Mol Cell Biol. 2002;22(4):1194–202. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11809810

    Article  CAS  Google Scholar 

  29. Hallmann R, Horn N, Selg M, Wendler O, Pausch F, Sorokin LM. Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev. 2005;85(3). Available from: http://physrev.physiology.org/content/85/3/979.long

    Article  CAS  Google Scholar 

  30. Borg T, Rubin K, Lundgren E, Borg KÖB. Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Dev Biol. 1984;104(1):86–96. Available from: http://www.sciencedirect.com/science/article/pii/0012160684900381?via%3Dihub

    Article  CAS  Google Scholar 

  31. Jin-long SUN, Xiao-yun Z, Xiao-dong CUI, Hong-ying LU, Qing-ling YIN, Xu J, et al. Effects of extracellular matrix on biological characteristics of late endothelial progenitor cells. Sheng Li Xue Bao. 2013;65(2011):409–16.

    Google Scholar 

  32. Hou L, Coller J, Natu V, Hastie TJ, Huang NF. Combinatorial extracellular matrix microenvironments promote survival and phenotype of human induced pluripotent stem cell-derived endothelial cells in hypoxia. Acta Biomater. 2016;44:188–99. Available from: http://www.sciencedirect.com/science/article/pii/S1742706116303907

    Article  CAS  Google Scholar 

  33. Lee KM, Kim H, Nemeno JG, Yang W, Yoon J, Lee SLJ. Natural cardiac extracellular matrix sheet as a biomaterial for cardiomyocyte transplantation. Transplant Proc. 2015;47(3):751–6. Available from: http://www.sciencedirect.com/science/article/pii/S0041134515001086?via%3Dihub

    Article  CAS  Google Scholar 

  34. Jung JP, Bache-Wiig MK, Provenzano PP, Ogle BM. Heterogeneous differentiation of human mesenchymal stem cells in 3D extracellular matrix composites. Biores Open Access. 2016;5(1):37–48. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26862471

    Article  CAS  Google Scholar 

  35. Duval K, Grover H, Han L-H, Mou Y, Pegoraro AF, Fredberg J, et al. Modeling physiological events in 2D vs. 3D cell culture. Physiology (Bethesda). 2017;32(4):266–77. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28615311

    CAS  Google Scholar 

  36. Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FDP. 3D cell culture systems: advantages and applications. J Cell Physiol. 2015;230(1):16–26. Available from: http://doi.wiley.com/10.1002/jcp.24683

    Article  CAS  Google Scholar 

  37. Jung JP, Hu D, Domian IJ, Ogle BM. An integrated statistical model for enhanced murine cardiomyocyte differentiation via optimized engagement of 3D extracellular matrices. Sci Rep. 2015;5:18705. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26687770

    Article  CAS  Google Scholar 

  38. Santhakumar R, Vidyasekar P, Verma RS. Cardiogel: a nano-matrix scaffold with potential application in cardiac regeneration using mesenchymal stem cells. PLoS One. 2014;9(12):e114697. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25521816

    Article  Google Scholar 

  39. Vanwinkle WB, Snuggs MB, Buja LM. Cardiogel: a biosynthetic extracellular matrix for cardiomyocyte culture. Vitr Cell Dev Biol Animal Soc Vitr Biol. 1996;32(9):478–85. Available from: https://link.springer.com/content/pdf/10.1007%2FBF02723051.pdf

    Article  CAS  Google Scholar 

  40. Brown AC, Dysart MM, Clarke KC, Stabenfeldt SE, Barker TH. Integrin α3β1 binding to fibronectin is dependent on the ninth type III repeat. J Biol Chem. 2015;290(42):25534–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26318455

    Article  CAS  Google Scholar 

  41. Hamaia SW, Pugh N, Raynal N, Némoz B, Stone R, Gullberg D, et al. Mapping of potent and specific binding motifs, GLOGEN and GVOGEA, for integrin α1β1 using collagen toolkits II and III. J Biol Chem. 2012;287(31):26019–28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22654115

    Article  CAS  Google Scholar 

  42. Schukur L, Zorlutuna P, Cha JM, Bae H, Khademhosseini A. Directed differentiation of size-controlled embryoid bodies towards endothelial and cardiac lineages in RGD-modified poly(ethylene glycol) hydrogels. Adv Healthc Mater. 2013;2(1):195–205. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23193099

    Article  CAS  Google Scholar 

  43. Choi WS, Joung YK, Lee Y, Bae JW, Park HK, Park YH, et al. Enhanced patency and endothelialization of small-caliber vascular grafts fabricated by coimmobilization of heparin and cell-adhesive peptides. ACS Appl Mater Interfaces. 2016;8(7):4336–46. Available from: http://pubs.acs.org/doi/10.1021/acsami.5b12052

    Article  CAS  Google Scholar 

  44. Ohta R, Niwa A, Taniguchi Y, Suzuki NM, Toga J, Yagi E, et al. Laminin-guided highly efficient endothelial commitment from human pluripotent stem cells. Sci Rep. 2016;6:35680. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27804979

    Article  CAS  Google Scholar 

  45. Cai L, Dinh CB, Heilshorn SC. One-pot synthesis of elastin-like polypeptide hydrogels with grafted VEGF-mimetic peptides. Biomater Sci. 2014;2(5):757–65. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24729868

    Article  CAS  Google Scholar 

  46. Mammadov R, Mammadov B, Guler MO, Tekinay AB. Growth factor binding on heparin mimetic peptide nanofibers. Biomacromolecules. 2012;13(10):3311–9. Available from: http://pubs.acs.org/doi/abs/10.1021/bm3010897

    Article  CAS  Google Scholar 

  47. Rouet V, Hamma-Kourbali Y, Petit E, Panagopoulou P, Katsoris P, Barritault D, et al. A synthetic glycosaminoglycan mimetic binds vascular endothelial growth factor and modulates angiogenesis. J Biol Chem. 2005;280(38):32792–800. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16014624

    Article  CAS  Google Scholar 

  48. Rath R, Lee JB, Tran T-L, Lenihan SF, Galindo CL, Su YR, et al. Biomimetic microstructure morphology in electrospun fiber mats is critical for maintaining healthy cardiomyocyte phenotype. Cell Mol Bioeng. 2016;9(1):107–15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28042345

    Article  Google Scholar 

  49. LER O’l, Fallas JA, Bakota EL, Kang MK, Hartgerink JD. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel. Nat Chem. 2011;3(10):821–8. Available from: https://ay17.moodle.umn.edu/pluginfile.php/987210/mod_resource/content/2/Collagen_Literature Learning.pdf

    Article  Google Scholar 

  50. Que R, Mohraz A, Da Silva NA, Wang S-W. Expanding functionality of recombinant human collagen through engineered non-native cysteines. Biomacromolecules. 2014;15(10):3540–9. Available from: http://pubs.acs.org/doi/abs/10.1021/bm500735d.

    Article  CAS  Google Scholar 

  51. Subbiah R, Hwang MP, Du P, Suhaeri M, Hwang J-H, Hong J-H, et al. Tunable crosslinked cell-derived extracellular matrix guides cell fate. Macromol Biosci. 2016;16(11):1723–34. Available from: http://doi.wiley.com/10.1002/mabi.201600280

    Article  CAS  Google Scholar 

  52. Neuta PA, Rojas DM, Agredo W, Gutierrez JO. Evaluation of the repairing effect of collagen type I and MaxGel on the infarcted myocardium in an animal model. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE; 2015. pp. 3529–32. Available from: http://ieeexplore.ieee.org/document/7319154/.

  53. Ravi S, Caves JM, Martinez AW, Xiao J, Wen J, Haller CA, et al. Effect of bone marrow-derived extracellular matrix on cardiac function after ischemic injury. Biomaterials. 2012;33(31):7736–45. Available from: http://www.sciencedirect.com/science/article/pii/S014296121200779X?via%3Dihub

    Article  CAS  Google Scholar 

  54. Seif-Naraghi SB, Salvatore MA, Schup-Magoffin PJ, Hu DP, Christman KL. Design and characterization of an injectable pericardial matrix gel: a potentially autologous scaffold for cardiac tissue engineering. Tissue Eng Part A. 2010;16(6):2017–27. Available from: http://www.liebertonline.com/doi/abs/10.1089/ten.tea.2009.0768

    Article  CAS  Google Scholar 

  55. Dai W, Gerczuk P, Zhang Y, Smith L, Kopyov O, Kay GL, et al. Intramyocardial injection of heart tissue-derived extracellular matrix improves postinfarction cardiac function in rats. J Cardiovasc Pharmacol Ther. 2013;18(3):270–9. Available from: http://journals.sagepub.com/doi/10.1177/1074248412472257

    Article  Google Scholar 

  56. Eitan Y, Sarig U, Dahan N, Machluf M. Acellular cardiac extracellular matrix as a scaffold for tissue engineering: In Vitro cell support, remodeling, and biocompatibility. Tissue Eng Part C Methods. 2010;16(4):671–83. Available from: http://www.liebertonline.com/doi/abs/10.1089/ten.tec.2009.0111

    Article  CAS  Google Scholar 

  57. Singelyn JM, Christman KL. Modulation of material properties of a decellularized myocardial matrix scaffold. Macromol Biosci. 2011;11(6):731–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21322109

    Article  CAS  Google Scholar 

  58. Williams C, Budina E, Stoppel WL, Sullivan KE, Emani S, Emani SM, et al. Cardiac extracellular matrix-fibrin hybrid scaffolds with tunable properties for cardiovascular tissue engineering. Acta Biomater. 2015;14:84–95. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25463503

    Article  CAS  Google Scholar 

  59. Jacot JG, Martin JC, Hunt DL. Mechanobiology of cardiomyocyte development. J Biomech. 2010;43(1):93–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19819458

    Article  Google Scholar 

  60. Pati F, Jang J, Ha D-H, Won Kim S, Rhie J-W, Shim J-H, et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014;5:3935. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24887553

    Article  CAS  Google Scholar 

  61. Jang J, Kim TG, Kim BS, Kim S-W, Kwon S-M, Cho D-W. Tailoring mechanical properties of decellularized extracellular matrix bioink by vitamin B2-induced photo-crosslinking. Acta Biomater. 2016;33:88–95. Available from: http://www.sciencedirect.com/science/article/pii/S1742706116300137?via%3Dihub

    Article  CAS  Google Scholar 

  62. Gao L, Kupfer ME, Jung JP, Yang L, Zhang P, Da Sie Y, et al. Myocardial tissue engineering with cells derived from human-induced pluripotent stem cells and a native-like, high-resolution, 3-dimensionally printed scaffold. Circ Res. 2017;120(8):1318–25. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28069694

    Article  CAS  Google Scholar 

  63. Syedain ZH, Meier LA, Lahti MT, Johnson SL, Tranquillo RT. Implantation of completely biological engineered grafts following decellularization into the sheep femoral artery. Tissue Eng Part A. 2014;20(11–12):1726–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24417686

    Article  CAS  Google Scholar 

  64. Lawson JH, Glickman MH, Ilzecki M, Jakimowicz T, Jaroszynski A, Peden EK, et al. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. Lancet (London, England). 2016;387(10032):2026–34. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27203778

    Article  Google Scholar 

  65. Ma B, Wang X, Wu C, Chang J. Crosslinking strategies for preparation of extracellular matrix-derived cardiovascular scaffolds. Regen Biomater. 2014;1(1):81–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26816627

    Article  Google Scholar 

  66. Paulsen SJ, Miller JS. Tissue vascularization through 3D printing: will technology bring us flow? Dev Dyn. 2015;244(5):629–40. Available from: http://doi.wiley.com/10.1002/dvdy.24254

    Article  CAS  Google Scholar 

  67. Visconti RP, Kasyanov V, Gentile C, Zhang J, Markwald RR, Mironov V. Towards organ printing: engineering an intra-organ branched vascular tree. Expert Opin Biol Ther. 2010;10(3):409–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20132061

    Article  Google Scholar 

  68. Kinstlinger IS, Miller JS. 3D-printed fluidic networks as vasculature for engineered tissue. Lab Chip. 2016;16(11):2025–43. Available from: http://xlink.rsc.org/?DOI=C6LC00193A

    Article  CAS  Google Scholar 

  69. Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue H-J, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758. Available from: http://advances.sciencemag.org/cgi/doi/10.1126/sciadv.1500758

    Article  Google Scholar 

  70. Costa-Silva B, da Costa MC, Melo FR, Neves CM, Alvarez-Silva M, Calloni GW, et al. Fibronectin promotes differentiation of neural crest progenitors endowed with smooth muscle cell potential. Exp Cell Res. 2009;315(6):955–67. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19331824

    Article  CAS  Google Scholar 

  71. Wong JCY, Gao SY, Lees JG, Best MB, Wang R, Tuch BE. Definitive endoderm derived from human embryonic stem cells highly express the integrin receptors alphaV and beta5. Cell Adhes Migr. 2010;4(1):39–45. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20026907

    Article  Google Scholar 

  72. Brafman DA, Phung C, Kumar N, Willert K. Regulation of endodermal differentiation of human embryonic stem cells through integrin-ECM interactions. Cell Death Differ. 2013;20(3):369–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23154389

    Article  CAS  Google Scholar 

  73. Narayanan K, Lim VY, Shen J, Tan ZW, Rajendran D, Luo S-C, et al. Extracellular matrix-mediated differentiation of human embryonic stem cells: differentiation to insulin-secreting beta cells. Tissue Eng Part A. 2014;20(1–2):424–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24020641

    Article  CAS  Google Scholar 

  74. Li Y, Gautam A, Yang J, Qiu L, Melkoumian Z, Weber J, et al. Differentiation of oligodendrocyte progenitor cells from human embryonic stem cells on vitronectin-derived synthetic peptide acrylate surface. Stem Cells Dev. 2013;22(10):1497–505. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23249362

    Article  CAS  Google Scholar 

  75. Caiazzo M, Okawa Y, Ranga A, Piersigilli A, Tabata Y, Lutolf MP. Defined three-dimensional microenvironments boost induction of pluripotency. Nat Mater. 2016;15(3):344–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26752655

    Article  CAS  Google Scholar 

  76. Derda R, Musah S, Orner BP, Klim JR, Li L, Kiessling LL. High-throughput discovery of synthetic surfaces that support proliferation of pluripotent cells. J Am Chem Soc. 2010;132(4):1289–95. Available from: http://pubs.acs.org/doi/abs/10.1021/ja906089g

    Article  CAS  Google Scholar 

  77. Tan T-W, Huang Y-L, Chang J-T, Lin J-J, Fong Y-C, Kuo C-C, et al. CCN3 increases BMP-4 expression and bone mineralization in osteoblasts. J Cell Physiol. 2012;227(6):2531–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21898398

    Article  CAS  Google Scholar 

  78. Saidak Z, Le Henaff C, Azzi S, Marty C, Da Nascimento S, Sonnet P, et al. Wnt/β-catenin signaling mediates osteoblast differentiation triggered by peptide-induced α5β1 integrin priming in mesenchymal skeletal cells. J Biol Chem. 2015;290(11):6903–12. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25631051

    Article  CAS  Google Scholar 

  79. Dzobo K, Vogelsang M, Parker MI. Wnt/β-catenin and MEK-ERK signaling are required for fibroblast-derived extracellular matrix-mediated endoderm differentiation of embryonic stem cells. Stem Cell Rev Reports. 2015;11(5):761–73. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26022506

    Article  CAS  Google Scholar 

  80. Cheng P, Andersen P, Hassel D, Kaynak BL, Limphong P, Juergensen L, et al. Fibronectin mediates mesendodermal cell fate decisions. Development. 2013;140(12):2587–96. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23715551

    Article  CAS  Google Scholar 

  81. Alpy F, Jivkov I, Sorokin L, Klein A, Arnold C, Huss Y, et al. Generation of a conditionally null allele of the laminin α1 gene. Genesis. 2005;43(2):59–70. Available from: http://doi.wiley.com/10.1002/gene.20154

    Article  CAS  Google Scholar 

  82. Li DY, Faury G, Taylor DG, Davis EC, Boyle WA, Mecham RP, et al. Novel arterial pathology in mice and humans hemizygous for elastin. J Clin Invest. 1998;102(10):1783–7. Available from: http://www.jci.org

    Article  CAS  Google Scholar 

  83. Marjamaa J, Tulamo R, Abo-Ramadan U, Hakovirta H, Frösen J, Rahkonen O, et al. Mice with a deletion in the first intron of theCol1a1 gene develop dissection and rupture of aorta in the absence of aneurysms: high-resolution magnetic resonance imaging, at 4.7 T, of the aorta and cerebral arteries. Magn Reson Med. 2006;55(3):592–7. Available from: http://doi.wiley.com/10.1002/mrm.20798

    Article  CAS  Google Scholar 

  84. SMART - Servier Medical ART. 2017. Available from: http://smart.servier.com/

  85. Johnson TD, Braden RL, Christman KL. Injectable ECM scaffolds for cardiac repair. Methods Mol Biol. 2014;1181:109–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25070331

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brenda M. Ogle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hall, M.L., Ogle, B.M. (2018). Cardiac Extracellular Matrix Modification as a Therapeutic Approach. In: Schmuck, E., Hematti, P., Raval, A. (eds) Cardiac Extracellular Matrix. Advances in Experimental Medicine and Biology, vol 1098. Springer, Cham. https://doi.org/10.1007/978-3-319-97421-7_7

Download citation

Publish with us

Policies and ethics