Skip to main content
  • 670 Accesses

Abstract

Dual infection with Mycobacterium tuberculosis (MTB) and Human Immunodeficiency Virus (HIV) has become an alarming problem that poses major challenges to health care, particularly in developing countries. The World Health Organization (WHO) estimated 10.4 million new cases of active TB globally in 2016, of which 10% was among people living with HIV. Approximately 374,000 deaths were reported among those with TB and HIV coinfection in the same year (WHO 2017).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abay, S. M., Deribe, K., Reda, A. A., Biadgilign, S., Datiko, D., Assefa, T., Todd, M., & Deribew, A. (2015). The effect of early initiation of antiretroviral therapy in TB/HIV co infected patients: A systematic review and meta-analysis. Journal of the International Association of Providers of AIDS Care, 14(6), 560–570.

    Article  PubMed  Google Scholar 

  • Abdool Karim, S. S., Naidoo, K., Grobler, A., Padayatchi, N., Baxter, C., Gray, A., et al. (2010). Timing of initiation of antiretroviral drugs during tuberculosis therapy. The New England Journal of Medicine, 362, 697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguiar, F., Vieira, M. A., Staviack, A., et al. (2009). Prevalence of anti-tuberculosis drug resistance in an HIV/AIDS reference hospital in Rio de Janeiro, Brazil. The International Journal of Tuberculosis and Lung Disease, 13, 54–61.

    CAS  PubMed  Google Scholar 

  • Barber, D. L., Wherry, E. J., Masopust, D., Zhu, B., Allison, J. P., Sharpe, A. H., Freeman, G. J., & Ahmed, R. (2006). Restoring function in exhausted CD8 T cells during chronic viral infection. Nature, 439, 682–687.

    Article  CAS  PubMed  Google Scholar 

  • Bell, L. C. K., & Noursadeghi, M. (2018). Pathogenesis of HIV-1 and Mycobacterium tuberculosis co-infection. Nature Reviews. Microbiology, 16, 80–90.

    Article  CAS  PubMed  Google Scholar 

  • Blanc, F. X., Sok, T., Laureillard, D., Borand, L., Rekacewicz, C., Nerrienet, E., et al. (2011). Earlier versus later start of antiretroviral therapy in HIV-infected adults with tuberculosis. The New England Journal of Medicine, 365, 1471–1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehme, C. C., Nabeta, P., Henostroza, G., et al. (2007). Operational feasibility of using loop-mediated isothermal amplification for diagnosis of pulmonary tuberculosis in microscopy centres of developing countries. Journal of Clinical Microbiology, 45, 1936–1940.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulougoura, A., & Sereti, I. (2016). HIV infection and immune activation: the role of co infections. Current Opinion in HIV and AIDS, 11(2), 191–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bourgarit, A., Carcelain, G., Martinez, V., et al. (2006). ExPLOS ion of tuberculin-specific Th1-responses induces immune restoration syndrome in tuberculosis and HIV co-infected patients. AIDS, 20(2), F1–F7.

    Article  CAS  PubMed  Google Scholar 

  • Breton, G., Duval, X., Estellat, C., et al. (2004). Determinants of immune reconstitution inflammatory syndrome in HIV type 1-infected patients with tuberculosis after initiation of antiretroviral therapy. Clinical Infectious Diseases, 39(11), 1709–1712.

    Article  PubMed  Google Scholar 

  • Brill, K. J., Li, Q., Larkin, R., Canaday, D. H., Kaplan, D. R., Boom, W. H., & Silver, R. F. (2001). Human natural killer cells mediate killing of intracellular Mycobacterium tuberculosis H37Rv via granule-independent mechanisms. Infection and Immunity, 69, 1755–1765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burman, W. J., & Jones, B. E. (2003). Clinical and radiographic features of HIV-related tuberculosis. Seminars in Respiratory Infections, 18, 262–271.

    Article  Google Scholar 

  • Centre for Disease Control. (2009). Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents. American Thoracic Society MMWR, 58, 1–198.

    Google Scholar 

  • Chaisson, R. E., Clermont, H. C., Holt, E. A., et al. (1996). Six-month supervised intermittent tuberculosis therapy in Haitian patients with and without HIV. American Journal of Respiratory and Critical Care Medicine, 154, 1034–1038.

    Article  CAS  PubMed  Google Scholar 

  • Chakravorty, S., Simmons, A. M., Rowneki, M., Parmar, H., Cao, Y., Ryan, J., Banada, P. P., Deshpande, S., Shenai, S., Gall, A., Glass, J., Krieswirth, B., Schumacher, S. G., Nabeta, P., Tukvadze, N., Rodrigues, C., Skrahina, A., Tagliani, E., Cirillo, D. M., Davidow, A., Denkinger, C. M., Persing, D., Kwiatkowski, R., Jones, M., & Alland, D. (2017). The new Xpert MTB/RIF Ultra: Improving detection of Mycobacterium tuberculosis and resistance to rifampin in an assay suitable for point-of-care testing. MBio, 8(4), e00812–e00817.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chang, C. A., Meloni, S. T., Eisen, G., Chaplin, B., Akande, P., Okonkwo, P., Rawizza, H. E., Tchetgen Tchetgen, E., & Kanki, P. J. (2015). Tuberculosis incidence and risk factors among human immunodeficiency virus (HIV)-infected adults receiving antiretroviral therapy in a large HIV program in Nigeria. Open Forum Infectious Diseases, 2, ofv154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chum, H. J., O’Brien, R. J., Chonde, T. M., Graf, P., & Rieder, H. L. (1996). An epidemiological study of tuberculosis and HIV infection in Tanzania, 1991–1993. AIDS, 10, 299–309.

    Article  CAS  PubMed  Google Scholar 

  • Collins, K. R., Mayanja-Kizza, H., Sullivan, B. A., Quiñones-Mateu, M. E., Toossi, Z., & Arts, E. J. (2000). Greater diversity of HIV-1 quasispecies in HIV-infected individuals with active tuberculosis. Journal of Acquired Immune Deficiency Syndromes, 24, 408–417.

    Article  CAS  PubMed  Google Scholar 

  • Dembele, M., Saleri, N., Migliori, G. B., Ouedraogo, H., Carvalho, A. C., Ouedraogo, M., et al. (2008). High incidence of sputum smear negative tuberculosis during HAART in Burkina Faso. The European Respiratory Journal, 32, 1668–1669.

    Article  CAS  PubMed  Google Scholar 

  • Department of Health and Human Services. (2016). Panel on antiretroviral guidelines for adults and adolescents. http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf.

  • Diedrich, C. R., & Flynn, J. L. (2011). HIV-Mycobacterium tuberculosis coinfection immunology: How does HIV-1 exacerbate tuberculosis? Infection and Immunity, 79(4), 1407–1417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaghy, H., Stebbing, J., & Patterson, S. (2004). Antigen presentation and the role of dendritic cells in HIV. Current Opinion in Infectious Diseases, 17, 1–6.

    Article  PubMed  Google Scholar 

  • Dorman, S. E., Schumacher, S. G., Alland, D., Nabeta, P., Armstrong, D. T., King, B., Hall, S. L., Charavorty, S., Cirillo, D. M., Tukvadze, N., Bablishvili, N., Stevens, W., Scott, L., Rodrigues, C., Kazi, M. I., Joloba, M., Nakiyingi, L., Nocol, M. P., Ghebrekristos, Y., Anyango, I., Murithi, W., Dietze, R., Peres, R. L., Skrahina, A., Auchynka, V., Chopra, K. K., Hanif, M., Liu, X., Yuan, X., Boehme, C. C., Ellner, J. J., & Denkinger, C. M. (2018). Xpert MTB/RIF Ultra for detection of Mycobacterium tuberculosisand rifampicin resistance: A prospective multicentre diagnostic accuracy study. The Lancet Infectious Diseases, 18(1), 76–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Bruyn, E., & Wilkinson, R. J. (2016). The immune interaction between HIV-1 infection and Mycobacterium tuberculosis. Microbiology Spectrum, 4(6): TBTB2-0012-2016.

    Google Scholar 

  • Egelund, E. F., Dupree, L., Huesgen, E., & Peloquin, C. A. (2017). The pharmacological challenges of treating tuberculosis and HIV coinfections. Expert Review of Clinical Pharmacology, 10(2), 213–223.

    Article  CAS  PubMed  Google Scholar 

  • Espinal, M. A., Laserson, K., Camacho, M., et al. (2001). Determinants of drug-resistant tuberculosis: Analysis of 11 countries. The International Journal of Tuberculosis and Lung Disease, 5, 887–893.

    CAS  PubMed  Google Scholar 

  • Fogli, M., Costa, P., Murdaca, G., Setti, M., Mingari, M. C., Moretta, L., Moretta, A., & De Maria, A. (2004). Significant NK cell activation associated with decreased cytolytic function in peripheral blood of HIV-1-infected patients. European Journal of Immunology, 34, 2313–2321.

    Article  CAS  PubMed  Google Scholar 

  • Gandhi, N. R., Moll, A., Sturm, A. W., et al. (2006). Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet, 368, 1575–1580.

    Article  PubMed  Google Scholar 

  • Geijtenbeek, T. B., Van Vliet, S. J., Koppel, E. A., Sanchez-Hernandez, M., Vandenbroucke-Grauls, C. M., Appelmelk, B., & Van Kooyk, Y. (2003). Mycobacteria target DC-SIGN to suppress dendritic cell function. The Journal of Experimental Medicine, 197, 7–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geldmacher, C., Ngwenyama, N., Schuetz, A., Petrovas, C., Reither, K., Heeregrave, E. J., Casazza, J. P., Ambrozak, D. R., Louder, M., Ampofo, W., Pollakis, G., Hill, B., Sanga, E., Saathoff, E., Maboko, L., Roederer, M., Paxton, W. A., Hoelscher, M., & Koup, R. A. (2010). Preferential infection and depletion of Mycobacterium tuberculosis-specific CD4 T cells after HIV-1 infection. The Journal of Experimental Medicine, 207, 2869–2881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Getahun, H., Harrington, M., O’Brien, R., et al. (2007). Diagnosis of smear-negative pulmonary tuberculosis in people with HIV infection of AIDS in resource-constrained settings: Informing urgent policy changes. Lancet, 369, 2042–2049.

    Article  PubMed  Google Scholar 

  • Getahun, H., Gunneberg, C., Granich, R., & Nunn, P. (2010). HIV infection-associated tuberculosis: The epidemiology and the response. Clinical Infectious Diseases, 50(Suppl 3), S201–S207.

    Article  PubMed  Google Scholar 

  • Gil-Setas, A., Torroba, L., Fernandez, J. L., Martinez-Artola, V., & Olite, J. (2004). Evaluation of the MB/BacT system compared with Middlebrook 7H11 and Lowenstein-Jensen media for detection and recovery of mycobacteria from clinical specimens. Clinical Microbiology and Infection, 10, 224–228.

    Article  CAS  PubMed  Google Scholar 

  • Goletti, D., Weissman, D., Jackson, R. W., Graham, N. M., Vlahov, D., et al. (1996). Effect of Mycobacterium tuberculosis on HIV replication: Role of immune activation. Journal of Immunology, 157, 1271–1278.

    CAS  Google Scholar 

  • Goletti, D., Weissman, D., Jackson, R. W., Collins, F., Kinter, A., et al. (1998). The in vitro induction of human immunodeficiency virus (HIV) replication in purified protein derivative-positive HIV-infected persons by recall antigen response to Mycobacterium tuberculosis is the result of a balance of the effects of endogenous interleukin-2 and proinflammatory and antiinflammatory cytokines. The Journal of Infectious Diseases, 177, 1332–1338.

    Article  CAS  PubMed  Google Scholar 

  • Gopalan, N., Andrade, B. B., & Swaminathan, S. (2014). Tuberculosis-immune reconstitution inflammatory syndrome in HIV: From pathogenesis to prediction. Expert Review of Clinical Immunology, 10(5), 631–645.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg, S. D., Frager, D., Suster, B., Walker, S., Stavropoulos, C., & Rothpearl, A. (1994). Active pulmonary tuberculosis in patients with AIDS: Spectrum of radiographic findings (including a normal appearance). Radiology, 193, 115–119.

    Article  CAS  PubMed  Google Scholar 

  • Gulzar, N., & Copeland, K. F. (2004). CD8+ T-cells: Function and response to HIV infection. Current HIV Research, 2, 23–37.

    Article  CAS  PubMed  Google Scholar 

  • Hanna, L. E., Nayak, K., Subramanyam, S., Venkatesan, P., Narayanan, P. R., & Swaminathan, S. (2009). Incomplete immunological recovery following anti-tuberculosis treatment in HIV-infected individuals with active tuberculosis. The Indian Journal of Medical Research, 129, 548–554.

    CAS  PubMed  Google Scholar 

  • Havlir, D. V., & Barnes, P. F. (1999). Tuberculosis in patients with human immunodeficiency virus infection. The New England Journal of Medicine, 340, 367–373.

    Article  CAS  PubMed  Google Scholar 

  • Havlir, D. V., Kendall, M. A., Ive, P., Kumwenda, J., Swindells, S., Qasba, S. S., et al. (2011). Timing of antiretroviral therapy for HIV-1 infection and tuberculosis. The New England Journal of Medicine, 365, 1482–1491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hongmanee, P., Stender, H., & Rasmussen, O. F. (2001). Evaluation of a fluorescence in situ hybridization assay for differentiation between tuberculous and non-tuberculous mycobacteria species in smears of Lowenstein-Jensen and mycobacteria growth indicator tube cultures using peptide nucleic acid probes. Journal of Clinical Microbiology, 39, 1032–1035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isaakidis, P., Das, M., Kumar, A. M. V., Peskett, C., Khetarpal, M., Bamne, A., Adsul, B., Manglani, M., Sachdeva, K. S., Parmar, M., Kanchar, A., Rewari, B. B., Deshpande, A., Rodrigues, C., Shetty, A., Rebello, L., Saranchuk, P., Tyagi, A. K. (2014). Alarming levels of drug-resistant tuberculosis in HIV-infected patients in petropolitan Mumbai, India. PLoS One, 9(10), e110461.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jambo, K. C., Sepako, E., Fullerton, D. G., Mzinza, D., Glennie, S., Wright, A. K., Heyderman, R. S., & Gordon, S. B. (2011). Bronchoalveolar CD4+ T cell responses to respiratory antigens are impaired in HIV-infected adults. Thorax, 66, 375–382.

    Article  PubMed  Google Scholar 

  • Jambo, K. C., Banda, D. H., Kankwatira, A. M., Sukumar, N., Allain, T. J., Heyderman, R. S., Russell, D. G., & Mwandumba, H. C. (2014). Small alveolar macrophages are infected preferentially by HIV and exhibit impaired phagocytic function. Mucosal Immunology, 7, 1116–1126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalokhe, A. S., Adekambi, T., Ibegbu, C. C., Ray, S. M., Day, C. L., & Rengarajan, J. (2015). Impaired degranulation and proliferative capacity of Mycobacterium tuberculosis-specific CD8+ T cells in HIV-infected individuals with latent tuberculosis. The Journal of Infectious Diseases, 211, 635–640.

    Article  CAS  PubMed  Google Scholar 

  • Kalsdorf, B., Scriba, T. J., Wood, K., Day, C. L., Dheda, K., Dawson, R., Hanekom, W. A., Lange, C., & Wilkinson, R. J. (2009). HIV-1 infection impairs the bronchoalveolar T-cell response to mycobacteria. American Journal of Respiratory and Critical Care Medicine, 180, 1262–1270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedzierska, K., Crowe, S. M., Turville, S., & Cunningham, A. L. (2003). The influence of cytokines, chemokines and their receptors on HIV-1 replication in monocytes and macrophages. Reviews in Medical Virology, 13, 39–56.

    Article  CAS  PubMed  Google Scholar 

  • Kenyon, T. A., Mwasekaga, M. J., Huebner, R., Rumisha, D., Binkin, N., & Maganu, E. (1999). Low levels of drug resistance amidst rapidly increasing tuberculosis and human immunodeficiency virus co-epidemics in Botswana. The International Journal of Tuberculosis and Lung Disease, 3, 4–11.

    CAS  PubMed  Google Scholar 

  • Kerkhoff, A. D., Wood, R., Lowe, D. M., Vogt, M., & Lawn, S. D. (2013). Blood neutrophil counts in HIV-infected patients with pulmonary tuberculosis: Association with sputum mycobacterial load. PLoS One, 8(7), e67956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwan, C. K., & Ernst, J. D. (2011). HIV and tuberculosis: A deadly human syndemic. Clinical Microbiology Reviews, 24, 351–376.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawn, S. D. (2012) Point-of-care detection of lipoarabinomannan (LAM) in urine for diagnosis of HIV-associated tuberculosis: a state of the art review. BMC Infectious Diseases, 12, 103

    Google Scholar 

  • Lawn, S. D., & Meintjes, G. (2011). Pathogenesis and prevention of immune reconstitution disease during antiretroviral therapy. Expert Review of Anti-Infective Therapy, 9(4), 415–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. J., Suo, J., Lin, C. B., Wang, J. D., Lin, T. Y., & Tsai, Y. C. (2003). Comparative evaluation of the BACTEC MGIT 960 system with solid medium for isolation of mycobacteria. The International Journal of Tuberculosis and Lung Disease, 7, 569–574.

    CAS  PubMed  Google Scholar 

  • Leeansyah, E., Wines, B. D., Crowe, S. M., & Jaworowski, A. (2007). The mechanism underlying defective Fcgamma receptor-mediated phagocytosis by HIV-1-infected human monocyte-derived macrophages. Journal of Immunology, 178, 1096–1104.

    Article  CAS  Google Scholar 

  • Maartens, G., Decloedt, E., & Cohen, K. (2009). Effectiveness and safety of antiretroviral with rifampicin: Crucial issues for high burden countries. Antiviral Therapy, 14, 1039–1043.

    Article  CAS  PubMed  Google Scholar 

  • Manabe, Y. C., Campbell, J. D., Sydnor, E., et al. (2007). Immune reconstitution inflammatory syndrome: Risk factors and treatment implications. Journal of Acquired Immune Deficiency Syndromes, 46(4), 456–462.

    Article  CAS  PubMed  Google Scholar 

  • Mancino, G., Placido, R., Bach, S., Mariani, F., Montesano, C., et al. (1997). Infection of human monocytes with Mycobacterium tuberculosis enhances human immunodeficiency virus type 1 replication and transmission to T cells. The Journal of Infectious Diseases, 175, 1531–1535.

    Article  CAS  PubMed  Google Scholar 

  • Manosuthi, W., Mankatitham, W., Lueangniyomkul, A., Thongyen, S., Likanonsakul, S., Suwanvattana, P., et al. (2012). Time to initiate antiretroviral therapy between 4 weeks and 12 weeks of tuberculosis treatment in HIV-infected patients: Results from the TIME study. Journal of Acquired Immune Deficiency Syndromes, 60, 377–383.

    Article  CAS  PubMed  Google Scholar 

  • Martineau, A. R., Newton, S. M., Wilkinson, K. A., Kampmann, B., Hall, B. M., Nawroly, N., Packe, G. E., Davidson, R. N., Griffiths, C. J., & Wilkinson, R. J. (2007). Neutrophil-mediated innate immune resistance to mycobacteria. Journal of Clinical Investigation, 117(7), 1988–1994.

    Article  CAS  PubMed Central  Google Scholar 

  • Meintjes, G., Wilkinson, R. J., Morroni, C., et al. (2010). Randomized placebo-controlled trial of prednisone for paradoxical tuberculosis-associated immune reconstitution inflammatory syndrome. AIDS, 24(15), 2381–2390.

    CAS  PubMed  Google Scholar 

  • Mendez-Samperio, P. (2017). Diagnosis of tuberculosis in HIV co-infected individuals: Current status, challenges and opportunities for the future. Scandinavian Journal of Immunology, 86(2), 76–82.

    Article  CAS  PubMed  Google Scholar 

  • Mfinanga, S. G., Kirenga, B. J., Chanda, D. M., Mutayoba, B., Mthiyane, T., Yimer, G., et al. (2014). Early versus delayed initiation of highly active antiretroviral therapy for HIV-positive adults with newly diagnosed pulmonary tuberculosis (TB-HAART): A prospective, international, randomised, placebo-controlled trial. The Lancet Infectious Diseases, 14, 563–571.

    Article  PubMed  Google Scholar 

  • Mondal, K., & Mandal, R. (2015). Cytopathological and microbiological profile of tuberculous lymphadenitis in HIV-infected patients with special emphasis on its corroboration with CD4+ T-cell counts. Acta Cytologica, 59, 156–162.

    Article  CAS  PubMed  Google Scholar 

  • Morris, L., Martin, D. J., Bredell, H., et al. (2003). HIV-1 RNA levels and CD4 lymphocyte counts during treatment for active tuberculosis in South African patients. The Journal of Infectious Diseases, 187, 1967–1971.

    Article  PubMed  Google Scholar 

  • Munier, M. L., & Kelleher, A. D. (2007). Acutely dysregulated, chronically disabled by the enemy within: T-cell responses to HIV-1 infection. Immunology and Cell Biology, 85, 6–15.

    Article  CAS  PubMed  Google Scholar 

  • Munsiff, S. S., Alpert, P. L., Gourevitch, M. N., Chang, C. J., Klein, R. S., Chang, C. J., & Klein, R. S. (1998). A prospective study of tuberculosis and HIV disease progression. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 19, 361–366.

    Article  CAS  PubMed  Google Scholar 

  • Musselwhite, L. W., Andrade, B. B., Ellenberg, S. S., et al. (2016). Vitamin D, d-dimer, interferon gamma, and sCD14 levels are independently associated with immune reconstitution inflammatory syndrome: A prospective, international study. eBioMedicine, 4, 115–123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakata, K., Rom, W. N., Honda, Y., Condos, R., Kanegasaki, S., Cao, Y., & Weiden, M. (1997). Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication in the lung. American Journal of Respiratory and Critical Care Medicine, 155, 996–1003.

    Article  CAS  PubMed  Google Scholar 

  • Narendran, G., Andrade, B. B., Porter, B. O., et al. (2013). Paradoxical tuberculosis immune reconstitution inflammatory syndrome (TB-IRIS) in HIV patients with culture confirmed pulmonary tuberculosis in India and the potential role of IL-6 in prediction. PLoS One, 8(5), 63541.

    Article  CAS  Google Scholar 

  • Nigou, J., Zelle-Rieser, C., Gilleron, M., Thurnher, M., & Puzo, G. (2001). Mannosylated lipoarabinomannans inhibit IL-12 production by human dendritic cells: Evidence for a negative signal delivered through the mannose receptor. Journal of Immunology, 166, 7477–7485.

    Article  CAS  Google Scholar 

  • O’Donnel, M. M., Souza Carvalho, S., et al. (2002). Poor response to tuberculosis treatment with regiments without rifampicin in immunosuppressed AIDS patients. The Brazilian Journal of Infectious Diseases, 6(6), 272–275.

    PubMed  Google Scholar 

  • Padyana, M., Bhat, R. V., Dinesha, M., & Nawaz, A. (2012). HIV-tuberculosis: A study of chest X-ray patterns in relation to CD4 count. North American Journal of Medical Sciences, 4(5), 221–225.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paiardini, M., & Muller-Trutwin, M. (2013). HIV-associated chronic immune activation. Immunological Reviews, 254(1), 78–101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palacios, E., Franke, M., Muñoz, M., et al. (2012). HIV-positive patients treated for multidrug-resistant tuberculosis: Clinical outcomes in the HAART era. The International Journal of Tuberculosis and Lung Disease, 16(3), 348–354.

    Article  CAS  PubMed  Google Scholar 

  • Palmieri, A., Girardi, E., Pellicelli, A. M., et al. (2002). Pulmonary tuberculosis in HIV-infected patients presenting with normal chest radiograph and negative sputum smear. Infection, 30, 68–74.

    Article  CAS  PubMed  Google Scholar 

  • Patel, N. R., Zhu, J., Tachado, S. D., Zhang, J., Wan, Z., Saukkonen, J., & Koziel, H. (2007). HIV impairs TNF-alpha mediated macrophage apoptotic response to Mycobacterium tuberculosis. Journal of Immunology, 179, 6973–6980.

    Article  CAS  Google Scholar 

  • Pawlowski, A., Jansson, M., Skold, M., Rottenberg, M. E., & Kallenius, G. (2012). Tuberculosis and HIV co-infection. PLoS Pathogens, 8(2), e1002464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira, M., Tripathy, S., Inamdar, V., et al. (2005). Drug resistance pattern of Mycobacterium tuberculosis in seropositive and seronegative HIV-TB patients in Pune, India. Indian Journal of Medical Research, 121, 235–239.

    CAS  Google Scholar 

  • Perlman, D. C., el-Sadr, W. M., Nelson, E. T., Matts, J. P., Telzak, E. E., Salomon, N., et al. (1997). Variation of chest radiographic patterns in pulmonary tuberculosis by degree of human immunodeficiency virus-related immunosuppression. The Terry Beirn Community Programs for Clinical Research on AIDS (CPCRA). The AIDS Clinical Trials Group (ACTG). Clinical Infectious Diseases, 25, 242–246.

    Article  CAS  PubMed  Google Scholar 

  • Pollock, K. M., Montamat-Sicotte, D. J., Grass, L., Cooke, G. S., Kapembwa, M. S., Kon, O. M., Sampson, R. D., Taylor, G. P., & Lalvani, A. (2016). PD-1 expression and cytokine secretion profiles of Mycobacterium tuberculosis-specific CD4+ T-cell subsets: Potential correlates of containment in HIV-TB co-infection. PLoS One, 11, e0146905.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pukenyte, E., Lescure, F. X., Rey, D., et al. (2007). Incidence of and risk factors for severe liver toxicity in HIV-infected patients on anti-tuberculosis treatment. The International Journal of Tuberculosis and Lung Disease, 11, 78–84.

    CAS  PubMed  Google Scholar 

  • Quy, H. T., Buu, T. N., Cobelens, F. G., Lan, N. T., Lambregts, C. S., & Borgdorff, M. W. (2006). Drug resistance among smear-positive tuberculosis patients in Ho Chi Minh City, Vietnam. The International Journal of Tuberculosis and Lung Disease, 10, 160–166.

    CAS  PubMed  Google Scholar 

  • Rajasekaran S., Chandrasekar C., Mahilmaran A., Kanakaraj K., Karthikeyan D. S. A., Suriakumar, J. (2009). HIV coinfection among multidrug resistant and extensively drug resistant tuberculosis patients–a trend. Journal of Indian Medical Association, 107(5), 281–286.

    Google Scholar 

  • Rangaka, M. X., Boulle, A., Wilkinson, R. J., et al. (2012). Randomized controlled trial of isoniazid preventive therapy in HIV-infected persons on antiretroviral therapy. Clinical Infectious Diseases, 55(12), 1698–1706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao, J. S., Kumari, S. J., & Kini, U. (2015). Correlation of CD4 counts with the FNAC patterns of tubercular lymphadenitis in patients with HIV: A cross sectional pilot study. Diagnostic Cytopathology, 43, 16–20.

    Article  PubMed  Google Scholar 

  • Regazzi, M., Carvalho, A. C., Villani, P., & Matteelli, A. (2014). Treatment optimization in patients co-infected with Mycobacterium tuberculosis infections: Focus on drug-drug interactions with rifamycins. Clinical Pharmacokinetics, 53(6), 489.

    Article  CAS  PubMed  Google Scholar 

  • Rosas-Taraco, A. G., Arce-Mendoza, A. Y., Caballero-Olin, G., & Salinas-Carmona, M. C. (2006). Mycobacterium tuberculosis upregulates coreceptors CCR5 and CXCR4 while HIV modulates CD14 favoring concurrent infection. AIDS Research and Human Retroviruses, 22, 45–51.

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Navarro, M. D., Hernández Espinosa, J. A., Bleda Hernández, M. J., et al. (2005). Effects of HIV status and other variables on the outcome of tuberculosis treatment in Spain. Archivos de Bronconeumología, 41(7), 363–370.

    PubMed  Google Scholar 

  • Sakamuri, R. M., Price, D. N., Lee, M., et al. (2013). Association of lipoarabinomannan with high density lipoprotein in blood: Implications for diagnostics. Tuberculosis, 93, 301–307.

    Article  CAS  PubMed  Google Scholar 

  • Samuel, J. P., Sood, A., Campbell, J. R., Khan, F. A., & Johnston, J. C. (2018). Comorbidities and treatment outcomes in multidrug resistant tuberculosis: A systematic review and meta-analysis. Scientific Reports, 8, 4980.

    Article  CAS  Google Scholar 

  • Scott, L. E., McCarthy, K., Gous, N., Nduna, M., van Rie, A., Sanne, I., Venter, W. F., Duse, A., & Stevens, W. (2011). Comparison of Xpert MTB/RIF with other nucleic acid technologies for diagnosing pulmonary tuberculosis in a high HIV prevalence setting: A prospective study. PLoS Medicine, 8(7), e1001061.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shah, M., Hanrahan, C., Wang, Z. Y., et al. (2016). Lateral flow urine lipoarabinomannan for detecting active tuberculosis in HIV-positive adults. Cochrane Database of Systematic Reviews, 5, CD011420.

    Google Scholar 

  • Shattock, R. J., Friedland, J. S., & Griffin, G. E. (1993). Modulation of HIV transcription in and release from human monocytic cells following phagocytosis of Mycobacterium tuberculosis. Research in Virology, 144, 7–12.

    Article  CAS  PubMed  Google Scholar 

  • Sterling, T. (2010). HIV infection-related tuberculosis: Clinical manifestations and treatment. Clinical Infectious Diseases, 50(3), S223–S230.

    Article  CAS  PubMed  Google Scholar 

  • Suchindran, S., Brouwer, E. S., & Van Rie, A. (2009). Is HIV infection a risk factor for multi-drug resistant tuberculosis? A systematic review. PLoS One, 4, e5561.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sullivan, Z. A., Wong, E. B., Ndung’u, T., Kasprowicz, V. O., & Bishai, W. R. (2015). Latent and active tuberculosis infection increase immune activation in individuals co-infected with HIV. eBioMedicine, 2, 334–340.

    Article  PubMed  PubMed Central  Google Scholar 

  • The TEMPRANO ANRS 12136 Study Group. (2015). A trial of early antiretrovirals and preventive therapy in Africa. The New England Journal of Medicine, 373, 808–822.

    Article  CAS  Google Scholar 

  • Toossi, Z., Nicolacakis, K., Xia, L., Ferrari, N. A., & Rich, E. A. (1997). Activation of latent HIV-1 by Mycobacterium tuberculosis and its purified protein derivative in alveolar macrophages from HIV-infected individuals in vitro. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 15, 325–331.

    Article  CAS  PubMed  Google Scholar 

  • Török, M. E., Yen, N. T., Chau, T. T., Mai, N. T., Phu, N. H., Mai, P. P., et al. (2011). Timing of initiation of antiretroviral therapy in human immunodeficiency virus (HIV)–associated tuberculous meningitis. Clinical Infectious Diseases, 52, 1374–1383.

    Article  PubMed  Google Scholar 

  • Uthman, O. A., Okwundu, C., Gbenga, K., Volmink, J., Dowdy, D., Zumla, A., et al. (2015). Optimal timing of antiretroviral therapy initiation for HIV-infected adults with newly diagnosed pulmonary tuberculosis: A systematic review and meta-analysis. Annals of Internal Medicine, 163, 32–39.

    Article  PubMed  Google Scholar 

  • van Kooyk, Y., Appelmelk, B., & Geijtenbeek, T. B. (2003). A fatal attraction: Mycobacterium tuberculosis and HIV-1 target DC-SIGN to escape immune surveillance. Trends in Molecular Medicine, 9, 153–159.

    Article  PubMed  CAS  Google Scholar 

  • Vankayalapati, R., Klucar, P., Wizel, B., Weis, S. E., Samten, B., Safi, H., Shams, H., & Barnes, P. F. (2004). NK cells regulate CD8+ T cell effector function in response to an intracellular pathogen. Journal of Immunology, 172, 130–137.

    Article  CAS  Google Scholar 

  • Vittor, A. Y., Garland, J. M., & Gilman, R. H. (2014). Molecular diagnosis of TB in the HIV positive population. Annals of Global Health, 80(6), 476–485.

    Article  PubMed  Google Scholar 

  • Wells, C. D., Cegielski, J. P., Nelson, L. J., et al. (2007). HIV infection and multidrug-resistant tuberculosis: The perfect storm. The Journal of Infectious Diseases, 196(Suppl 1), S86–S107.

    Article  PubMed  Google Scholar 

  • WHO. (2004). TB/HIV: a clinical manual, Harries A, Maher D, Graham S. WHO/HTM/TB/2004.329 (2nd ed.). Geneva: WHO.

    Google Scholar 

  • WHO. (2007). Improving the diagnosis and treatment of smear-negative pulmonary and extrapulmonary tuberculosis among adults and adolescents: Recommendations for HIV-prevalent and resource-constrained settings, WHO/HTM/T B/2007.379. Geneva: WHO.

    Google Scholar 

  • WHO. (2008). Implementing the WHO Stop TB Strategy: A handbook for national tuberculosis control programmers (p. 67). Geneva: WHO www.who.int/tb/publications/2008/.

    Google Scholar 

  • WHO. (2009a). Rapid advice: Antiretroviral therapy for HIV infection in adults and adolescents. http://www.searo.who.int/LinkFiles/HIV-AIDS_Rapid_Advice_Adult_ ART_Guidelines(web).pdf.

  • WHO. (2009b). Global tuberculosis control: Surveillance, planning, financing, WHO report 2009. Geneva: WHO.

    Google Scholar 

  • WHO. (2011a). Rapid implementation of the Xpert MTB/RIF diagnostic test: Technical and operational “how to” practical considerations, WHO/HTM/TB/2011.2. Geneva: WHO.

    Google Scholar 

  • WHO. (2011b). Guidelines for intensified tuberculosis case-finding and isoniazid preventive therapy for people living with HIV in resource-constrained settings. Geneva: World Health Organization http://whqlibdoc.who.int/publications/2011/9789241500708_eng.pdf.

    Google Scholar 

  • WHO. (2012). WHO policy on collaborative TB/HIV activities: Guidelines for national programmes and other stakeholders. http://www.who.int/tb/publications/2012/tb_hiv_policy_9789241503006/en/.

  • WHO. (2013a). Automated real-time nucleic acid amplification technology for rapid and simultaneous detection of tuberculosis and rifampin resistance: Xpert MTB/RIF system for the diagnosis of pulmonary and extrapulmonary TB in adults and children. Policy update. Geneva, Switzerland: WHO.

    Google Scholar 

  • WHO. (2013b). Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection: Recommendations for a public health approach. http://www.who.int/hiv/pub/guidelines/arv2013/.

  • WHO. (2015a). The use of lateral flow urine lipoarabinomannan assay (LF-LAM) for the diagnosis and screening of active tuberculosis in people living with HIV. Policy update. Geneva, Switzerland: WHO.

    Google Scholar 

  • WHO. (2015b). WHO global tuberculosis report 2015. Geneva: WHO http://apps.who.int/iris/bitstream/10665/44165/1/9789241547833_eng.pdf?ua=1&ua=1.

    Google Scholar 

  • WHO. (2016). WHO global tuberculosis report 2016. Geneva: WHO http://www.who.int/tb/publications/global_report/en/.

    Google Scholar 

  • WHO. (2017). Global tuberculosis control 2017. Geneva: WHO www.who.int/tb/publications/global_report/en/.

    Google Scholar 

  • WHO. (2018). Tuberculosis control. Retrieved 14 March 2018 from http://www.who.int/trade/distance_learning/gpgh/gpgh3/en/index4.htm.

  • Woodworth, J. S., Wu, Y., & Behar, S. M. (2008). Mycobacterium tuberculosis-specific CD8+ T cells require perforin to kill target cells and provide protection in vivo. Journal of Immunology, 181, 8595–8603.

    Article  CAS  Google Scholar 

  • Yimer, G., Aderaye, G., Amogne, W., et al. (2008). Anti-tuberculosis therapy-induced hepatotoxicity among Ethiopian HIV-positive and negative patients. PLoS One, 3(3), e1809.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yoo, S. D., Cattamanchi, A., den Boon, S., Worodria, W., Kisembo, H., Huang, L., & Davis, J. L. (2011). Clinical significance of normal chest radiographs among HIV-seropositive patients with suspected tuberculosis in Uganda. Respirology, 16(5), 836–841.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., Nakata, K., Weiden, M., & Rom, W. N. (1995). Mycobacterium tuberculosis enhances human immunodeficiency virus-1 replication by transcriptional activation at the long terminal repeat. The Journal of Clinical Investigation, 95, 2324–2331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luke Elizabeth Hanna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanna, L.E. (2018). Coinfection with Mycobacterium tuberculosis and HIV. In: Venketaraman, V. (eds) Understanding the Host Immune Response Against Mycobacterium tuberculosis Infection. Springer, Cham. https://doi.org/10.1007/978-3-319-97367-8_7

Download citation

Publish with us

Policies and ethics