Skip to main content

On the Exact Traveling Wave Solutions of a Hyperbolic Reaction-Diffusion Equation

  • Chapter
  • First Online:
Advanced Computing in Industrial Mathematics (BGSIAM 2017)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 793))

Included in the following conference series:

Abstract

We discuss a class of hyperbolic reaction-diffusion equations and apply the modified method of simplest equation in order to obtain an exact solution of an equation of this class (namely the equation that contains polynomial nonlinearity of fourth order). We use the equation of Bernoulli as a simplest equation and obtain traveling wave solution of a kink kind for the studied nonlinear reaction-diffusion equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ablowitz, M.J., Kaup, D.J., Newell, A.C.: Nonlinear evolution equations of physical significance. Phys. Rev. Lett. 31, 125–127 (1973)

    Article  MathSciNet  Google Scholar 

  2. Ablowitz, M.J., Kaup, D.J., Newell, A.C., Segur, H.: Inverse scattering transform - fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    Article  MathSciNet  Google Scholar 

  3. Ablowitz, M., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  4. Al-Ghoul, M., Eu, B.C.: Hyperbolic reaction-diffusion equations, patterns, and phase speeds for the Brusselator. J. Phys. Chem. 100, 18900–18910 (1996)

    Article  Google Scholar 

  5. Ames, W.F.: Nonlinear Partial Differential Equations in Engineering. Academic Press, New York (1972)

    MATH  Google Scholar 

  6. Benkirane, A., Gossez, J.-P. (eds.): Nonlinear Patial Differential Equations. Addison Wesley Longman, Essex, UK (1996)

    Google Scholar 

  7. Burq, N., Raugel, R., Schlag, W.: Long-time dynamics for damped Klein-Gordon equations. hal-01154421 (2015)

    Google Scholar 

  8. Cantrell, R.S., Costner, C.: Spatial Ecology Via Reaction-Diffusion Equations. Wiley, Chichester (2003)

    Google Scholar 

  9. Debnath, L.: Nonlinear Partial Differential Equations for Scientists and Engineers. Springer, New York (2012)

    Book  Google Scholar 

  10. Fan, E., Hon, Y.C.: A series of travelling wave solutions for two variant Boussinesq equations in shallow water waves. Chaos, Solitons Fractals 15, 559–566 (2003)

    Article  MathSciNet  Google Scholar 

  11. Galaktionov, V.A., Svirhchevskii, S.R.: Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics. Chapman & Hall/CRC, Bora Raton, FL (2007)

    Google Scholar 

  12. Gallay, T., Raugel, R.: Scaling variables and stability of hyperbolic fronts. SIAM J. Math. Anal. 32, 1–29 (2000)

    Article  MathSciNet  Google Scholar 

  13. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.R.: Method for solving Korteweg- de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  Google Scholar 

  14. Gonzalez, J.A., Oliveira, F.A.: Nucleation theory, the escaping processes, and nonlinear stability. Phys. Rev. B 59, 6100–6105 (1999)

    Article  Google Scholar 

  15. Grzybowski, B.A.: Chemistry in Motion: Reaction-Diffusion Systems for Micro- and Nanotechnology. Wiley, Chichester (2009)

    Book  Google Scholar 

  16. He, J.-H., Wu, X.-H.: Exp-function method for nonlinear wave equations. Chaos, Solitons Fractals 30, 700–708 (2006)

    Article  MathSciNet  Google Scholar 

  17. Hirsch, M., Devaney, R.L., Smale, S.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Academic Press, New York (2004)

    MATH  Google Scholar 

  18. Hirota, R.: Exact solution of Korteweg-de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  Google Scholar 

  19. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  20. Kudryashov, N.A.: Exact solutions of the generalized Kuramoto - Sivashinsky equation. Phys. Lett. A 147, 287–291 (1990)

    Article  MathSciNet  Google Scholar 

  21. Kudryashov, N.A.: Exact solitary waves of the Fisher equation. Phys. Lett. 342, 99–106 (2005)

    Article  MathSciNet  Google Scholar 

  22. Kudryashov, N.A.: Simplest equation method to look for exact solutions of nonlinear differential equations. Chaos Solitons Fractals 24, 1217–1231 (2005)

    Article  MathSciNet  Google Scholar 

  23. Kudryashov, N.A., Demina, M.V.: Polygons of differential equations for finding exact solutions. Chaos Solitons Fractals 33, 480–496 (2007)

    Article  MathSciNet  Google Scholar 

  24. Kudryashov, N.A., Loguinova, N.B.: Extended simplest equation method for nonlinear differential equations. Appl. Math. Comput. 205, 396–402 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Kudryashov, N.A.: Solitary and periodic wave solutions of generalized Kuramoto-Sivashinsky equation. Regul. Chaotic Dyn. 13, 234–238 (2008)

    Article  MathSciNet  Google Scholar 

  26. Kudryashov, N.A.: Meromorphic solutions of nonlinear ordinary differential equations. Commun. Nonlinear Sci. Numer. Simul. 15, 2778–2790 (2010)

    Article  MathSciNet  Google Scholar 

  27. Logan, J.D.: An Introduction to Nonlinear Partial Differential Equations. Wiley, New York (2008)

    MATH  Google Scholar 

  28. Leung, A.W.: Systems of Nonlinear Partial Differential Equations. Applications to Biology and Engineering. Kluwer, Dordrecht (1989)

    Book  Google Scholar 

  29. Malfliet, W., Hereman, W.: The tanh method: I. exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54, 563–568 (1996)

    Article  MathSciNet  Google Scholar 

  30. Martinov, N., Vitanov, N.: On some solutions of the two-dimensional sine-Gordon equation. J. Phys. A Math. Gen. 25, L419–L425 (1992)

    Article  MathSciNet  Google Scholar 

  31. Martinov, N., Vitanov, N.: Running wave solutions of the two-dimensional sine-Gordon equation. J. Phys. A: Math. Gen. 25, 3609–3613 (1992)

    Article  MathSciNet  Google Scholar 

  32. Martinov, N.K., Vitanov, N.K.: New class of running-wave solutions of the (2+ 1)-dimensional sine-Gordon equation. J. Phys. A: Math. Gen. 27, 4611–4618 (1994)

    Article  MathSciNet  Google Scholar 

  33. Murray, J.D.: Lectures on Nonlinear Differential Equation Models in Biology. Oxford University Press, Oxford, UK (1977)

    MATH  Google Scholar 

  34. Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (1991)

    Book  Google Scholar 

  35. Remoissenet, M.: Waves Called Solitons. Springer, Berlin (1993)

    MATH  Google Scholar 

  36. Scott, A.C.: Nonlinear Science. Emergence and Dynamics of Coherent Structures. Oxford University Press, Oxford, UK (1999)

    MATH  Google Scholar 

  37. Strauss, W.A.: Partial Differential Equations: An Introduction. Wiley, New York (1992)

    MATH  Google Scholar 

  38. Tabor, M.: Chaos and Integrability in Dynamical Systems. Wiley, New York (1989)

    MATH  Google Scholar 

  39. Verhulst, F.: Nonlinear Differential Equations and Dynamical Systems. Springer, Berlin (1990)

    Book  Google Scholar 

  40. Vitanov, N.K., Jordanov, I.P., Dimitrova, Z.I.: On nonlinear dynamics of interacting populations: coupled kink waves in a system of two populations. Commun. Nonlinear Sci. Numer. Simulat. 2009(14), 2379–2388 (2009)

    Article  MathSciNet  Google Scholar 

  41. Vitanov, N.K., Jordanov, I.P., Dimitrova, Z.I.: On nonlinear population waves. Appl. Math. Comput. 215, 2950–2964 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Vitanov, N.K., Dimitrova, Z.I., Kantz, H.: Modified method of simplest equation and its application to nonlinear PDEs. Appl. Math. Comput. 216, 2587–2595 (2010)

    MathSciNet  MATH  Google Scholar 

  43. Vitanov, N.K.: Application of simplest equations of Bernoulli and Riccati kind for obtaining exact traveling wave solutions for a class of PDEs with polynomial nonlinearity. Commun. Nonlinear Sci. Numer. Simulat. 15, 2050–2060 (2010)

    Article  MathSciNet  Google Scholar 

  44. Vitanov, N.K., Dimitrova, Z.I.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for two classes of model PDEs from ecology and population dynamics. Commun. Nonlinear Sci. Numer. Simulat. 15, 2836–2845 (2010)

    Article  MathSciNet  Google Scholar 

  45. Vitanov, N.K.: Modified method of simplest equation: powerful tool for obtaining exact and approximate traveling-wave solutions of nonlinear PDEs. Commun. Nonlinear Sci. Numer. Simulat. 16, 1176–1185 (2011)

    Article  MathSciNet  Google Scholar 

  46. Vitanov, N.K., Dimitrova, Z.I., Vitanov, K.N.: On the class of nonlinear PDEs that can be treated by the modified method of simplest equation. Application to generalized Degasperis - Processi equation and b-equation. Commun. Nonlinear Sci. Numer. Simulat. 16, 3033 – 3044 (2011)

    Article  MathSciNet  Google Scholar 

  47. Vitanov, N.K.: On modified method of simplest equation for obtaining exact and approximate solutions of nonlinear PDEs: the role of the simplest equation. Commun. Nonlinear Sci. Numer. Simul. 16, 4215–4231 (2011)

    Article  MathSciNet  Google Scholar 

  48. Vitanov, N.K., Dimitrova, Z.I., Kantz, H.: Application of the method of simplest equation for obtaining exact traveling-wave solutions for the extended Korteweg-de Vries equation and generalized Camassa-Holm equation. Appl. Math. Comput. 219, 7480–7492 (2013)

    MathSciNet  MATH  Google Scholar 

  49. Vitanov, N.K., Dimitrova, Z.I., Vitanov, K.N.: Traveling waves and statistical distributions connected to systems of interacting populations. Comput. Math. Appl. 66, 1666–1684 (2013)

    Article  MathSciNet  Google Scholar 

  50. Vitanov, N.K., Dimitrova, Z.I.: Solitary wave solutions for nonlinear partial differential equations that contain monomials of odd and even grades with respect to participating derivatives. Appl. Math. Comput. 247, 213–217 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Vitanov, N.K., Dimitrova, Z.I., Vitanov, K.N.: Modified method of simplest equation for obtaining exact analytical solutions of nonlinear partial differential equations: further development of the methodology with applications. Appl. Math. Comput. 269, 363–378 (2015)

    MathSciNet  Google Scholar 

  52. Vitanov, N.K.: Science Dynamics and Research Production. Indicators, Indexes, Statistical Laws and Mathematical Models. Springer, Cham (2016)

    Google Scholar 

  53. Vitanov, N.K., Vitanov, K.N.: Box model of migration channels. Math. Soc. Sci. 80, 108–114 (2016)

    Article  MathSciNet  Google Scholar 

  54. Vitanov N.K., Dimitrova Z.I.: Modified method of simplest equation and the nonlinear Schrödinger equation. J. Theor. Appl. Mech. 48, 58–69 (2018)

    Google Scholar 

  55. Wang, Q.F., Cheng, D.Z.: Numerical solution of damped nonlinear Klein-Gordon equations using variational method and finite element approach. Appl. Math. Comput. 162, 381–401 (2005)

    MathSciNet  MATH  Google Scholar 

  56. Wazwaz, A.-M.: The tanh method for traveling wave solutions of nonlinear equations. Appl. Math. Comput. 154, 713–723 (2004)

    MathSciNet  MATH  Google Scholar 

  57. Wazwaz, A.-M.: Partial Differential Equations and Solitary Waves Theory. Springer, Dordrecht (2009)

    Book  Google Scholar 

  58. Wilhelmson, H., Lazzaro, E.: Reaction-Diffusion Problem in the Physics of Hot Plasmas. IOP Publishing, Bristol (2000)

    Google Scholar 

Download references

Acknowledgements

This study contains results, which are supported by the UNWE project for scientific research with grant agreement No. NID NI – 21/2016

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay K. Vitanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jordanov, I.P., Vitanov, N.K. (2019). On the Exact Traveling Wave Solutions of a Hyperbolic Reaction-Diffusion Equation. In: Georgiev, K., Todorov, M., Georgiev, I. (eds) Advanced Computing in Industrial Mathematics. BGSIAM 2017. Studies in Computational Intelligence, vol 793. Springer, Cham. https://doi.org/10.1007/978-3-319-97277-0_16

Download citation

Publish with us

Policies and ethics