Skip to main content

Impact of Genomics on Capsicum Breeding

  • Chapter
  • First Online:
The Capsicum Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 1047 Accesses

Abstract

The genus Capsicum includes several species of cultivated peppers, including Capsicum annuum, C. frutescens, C. chinense, C. baccatum, and C. pubescens. Information on plant genomics is essential not only for the efficient and accurate advancement of breeding programs, but also for the correct management of plant genetic resources. Genomes of six Capsicum lines which belong to C. annuum, C. baccatum, and C. chinense have been sequenced using next-generation sequencing (NGS) approaches. Consequently, high-throughput genomewide single-nucleotide polymorphism genotyping techniques based on NGS or DNA microarrays have been developed. Genotyping plant populations enable the evaluation of population structure and detection of genetic loci via quantitative trait locus (QTL) analysis and genomewide association study (GWAS). In this chapter, we introduce the current state of Capsicum genomics and its contribution to Capsicum breeding. Additionally, we report the results of our GWAS based on double-digest restriction-site associated DNA (ddRAD-Seq) analyses performed on 192 Capsicum lines stocked at The Kihara Institute for Biological Research, Yokohama City University, Japan. The genomics information summarized in this chapter will potentially be useful for the development of new and attractive pepper cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn YK, Manivannan A, Karna S, Jun TH, Yang EY et al. (2018) Whole genome resequencing of Capsicum baccatum and Capsicum annuum to discover single nucleotide polymorphism related to powdery mildew resistance. Sci Rep 8:5188

    Google Scholar 

  • Alexander DH, Novembre J, Lange K (2009) Fast model-based estimation of ancestry in unrelated individuals. Genome Res 19:1655–1664

    Article  CAS  Google Scholar 

  • Bolger A, Scossa F, Bolger ME, Lanz C, Maumus F et al (2014) The genome of the stress-tolerant wild tomato species Solanum pennellii. Nat Genet 46:1034–1038

    Article  CAS  Google Scholar 

  • Bombarely A, Rosli HG, Vrebalov J, Moffett P, Mueller LA, Martin GB (2012) A draft genome sequence of Nicotiana benthamiana to enhance molecular plant-microbe biology research. Mol Plant Micr Interact 25:1523–1530

    Article  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  Google Scholar 

  • Cheng J, Zhao Z, Li B, Qin C, Wu Z, Trejo-Saavedra DL, Luo X, Cui J, Rivera-Bustamante RF, Li S, Hu K (2016) A comprehensive characterization of simple sequence repeats in pepper genomes provides valuable resources for marker development in Capsicum. Sci Rep 6:18919

    Article  CAS  Google Scholar 

  • Chhapekar S, Kehie M, Ramchiary N (2016) Advances in molecular breeding of Capsicum species. In: Deka PC (ed) Biotechnological tools for genetic resources. Daya Publishing House, New Delhi, pp 233–274

    Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D et al (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22:961–975

    Article  CAS  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM et al (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    Article  CAS  Google Scholar 

  • Gopalakrishnan TR, Gopalakrishnan PK, Peter KV (1989) Inheritance of clusterness and fruit orientation in chilli (Capsicum annuum L.). Indian J Genetics 49:219–222

    Google Scholar 

  • Han K, Jeong HJ, Yang HB, Kang SM, Kwon JK et al (2016) An ultra-high-density bin map facilitates high-throughput QTL mapping of horticultural traits in pepper (Capsicum annuum). DNA Res 23:81–91

    Article  CAS  Google Scholar 

  • Han K, Lee HY, Ro NY, Hur OS, Lee JH et al (2018) QTL mapping and GWAS reveal candidate genes controlling capsaicinoid content in Capsicum. Plant Biotechnol J. https://doi.org/10.1111/pbi.12894

  • Hill TA, Ashrafi H, Reyes-Chin-Wo S, Yao J, Stoffel K et al (2013) Characterization of Capsicum annuum genetic diversity and population structure based on parallel polymorphism discovery with a 30 K unigene Pepper GeneChip. PLoS One 8:e56200

    Article  CAS  Google Scholar 

  • Hirakawa H, Shirasawa K, Miyatake K, Nunome T, Negoro S et al (2014) Draft genome sequence of eggplant (Solanum melongena L.): the representative Solanum species indigenous to the old world. DNA Res 21:649–660

    Article  CAS  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L et al (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    Article  CAS  Google Scholar 

  • Hulse-Kemp AM, Ashrafi H, Plieske J, Lemm J, Stoffel K et al (2016) A HapMap leads to a Capsicum annuum SNP infinium array: a new tool for pepper breeding. Hort Res 3:16036

    Article  Google Scholar 

  • Hulse-Kemp AM, Maheshwari S, Stoffel K, Hill TA, Jaffe D et al (2018) Reference quality assembly of the 3.5-Gb genome of Capsicum annuum from a single linked-read library. Hort Res 5:4

    Google Scholar 

  • IPGRI, AVRDC, and CATIE (1995) Descriptors for Capsicum (Capsicum spp.). International Plant Genetic Resources Institute, Rome

    Google Scholar 

  • Kim S, Park M, Yeom SI, Kim YM, Lee JM et al (2014) Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nat Genet 46:270–278

    Article  CAS  Google Scholar 

  • Kim S, Park J, Yeom SI, Kim YM, Seo E et al (2017) New reference genome sequences of hot pepper reveal the massive evolution of plant disease-resistance genes by retroduplication. Genome Biol 18:210

    Article  Google Scholar 

  • Lefebvre V, Pflieger S, Thabuis A, Caranta C, Blattes A et al (2002) Towards the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes. Genome 45:839–854

    Article  CAS  Google Scholar 

  • Liedl BE, Labate JA, Stommel JR, Slade A, Kole C (2013) Genetics, genomics and breeding of tomato. CRC Press, Boca Raton

    Book  Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mimura Y, Inoue T, Minamiyama Y, Kubo N (2012) An SSR-based genetic map of pepper (Capsicum annuum L.) serves as an anchor for the alignment of major pepper maps. Breed Sci 62:93–98

    Article  CAS  Google Scholar 

  • Minamiyama Y, Tsuro M, Hirai M (2006) An SSR-based linkage map of Capsicum annuum. Mol Breed 18:157–169

    Article  CAS  Google Scholar 

  • Moscone EA, Baranyi M, Ebert I, Greilhuber J, Ehrendorfer F et al (2003) Analysis of nuclear DNA content in Capsicum (Solanaceae) by flow cytometry and feulgen densitometry. Ann Bot 92:21–29

    Article  Google Scholar 

  • Nimmakayala P, Abburi VL, Saminathan T, Alaparthi SB, Almeida A et al (2016a) Genome-wide diversity and association mapping for capsaicinoids and fruit weight in Capsicum annuum L. Sci Rep 6:38081

    Article  CAS  Google Scholar 

  • Nimmakayala P, Abburi VL, Saminathan T, Almeida A, Davenport B et al (2016b) Genome-wide divergence and linkage disequilibrium analyses for Capsicum baccatum revealed by genome-anchored single nucleotide polymorphisms. Front Plant Sci 7:1646

    PubMed  PubMed Central  Google Scholar 

  • Ogundiwin EA, Berke TF, Massoudi M, Black LL, Huestis G (2005) Construction of 2 intraspecific linkage maps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.). Genome 48:698–711

    Article  CAS  Google Scholar 

  • Paran I, Ben-Chaim A, Kang BC, Jahn M (2007) Capsicums. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 5. Springer, New York, pp 209–226

    Google Scholar 

  • Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135

    Article  CAS  Google Scholar 

  • Poland JA, Rife TW (2012) Genotyping-by-sequencing for plant breeding and genetics. Plant Genome 5:92–102

    Article  CAS  Google Scholar 

  • Qin C, Yu C, Shen Y, Fang X, Chen L et al (2014) Whole-genome sequencing of cultivated and wild peppers provides insights into Capsicum domestication and specialization. Proc Natl Acad Sci USA 111:5135–5140

    Article  CAS  Google Scholar 

  • Razali R, Bougouffa S, Morton MJL, Lightfoot DJ, Alam I et al (2017) The genome sequence of the wild tomato Solanum pimpinellifolium provides insights into salinity tolerance. Biorxiv. https://doi.org/10.1101/215517

  • Shirasawa K, Ishii K, Kim C, Ban T, Suzuki M et al (2013) Development of Capsicum EST-SSR markers for species identification and in silico mapping onto the tomato genome sequence. Mol Breed 31:101–110

    Article  CAS  Google Scholar 

  • Shirasawa K, Hirakawa H, Isobe S (2016) Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato. DNA Res 23:145–153

    Article  CAS  Google Scholar 

  • Sierro N, Battey JN, Ouadi S, Bovet L, Goepfert S et al (2013) Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis. Genome Biol 14:R60

    Article  Google Scholar 

  • Sierro N, Battey JN, Ouadi S, Bakaher N, Bovet L et al (2014) The tobacco genome sequence and its comparison with those of tomato and potato. Nat Commun 5:3833

    Article  CAS  Google Scholar 

  • Sugita T, Semi Y, Sawada H, Utoyama Y, Hosomi Y et al (2013) Development of simple sequence repeat markers and construction of a high-density linkage map of Capsicum annuum. Mol Breed 31:909–920

    Article  CAS  Google Scholar 

  • Taranto F, D’Agostino N, Greco B, Cardi T, Tripodi P (2016) Genome-wide SNP discovery and population structure analysis in pepper (Capsicum annuum) using genotyping by sequencing. BMC Genom 17:943

    Article  CAS  Google Scholar 

  • The Potato Genome Sequencing Consortium (2011) Genome sequence and analysis of the tuber crop potato. Nature 475:189–195

    Article  Google Scholar 

  • The Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635–641

    Article  Google Scholar 

  • Umemoto N, Nakayasu M, Ohyama K, Yotsu-Yamashita M, Mizutani M et al (2016) Two cytochrome P450 monooxygenases catalyze early hydroxylation steps in the potato steroid glycoalkaloid biosynthetic pathway. Plant Physiol 171:2458–2467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Eck J (2018) Genome editing and plant transformation of solanaceous food crops. Curr Opin Biotechnol 49:35–41

    Article  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  Google Scholar 

  • Walsh BM, Hoot SB (2001) Phylogenetic relationships of Capsicum (Solanaceae) using DNA sequences from two noncoding regions: the chloroplast atpB‐rbcL spacer region and nuclear waxy introns. Int J Plant Sci 162:1409–1418

    Google Scholar 

  • Wu F, Eannetta NT, Xu Y, Durrett R, Mazourek M et al (2009) A COSII genetic map of the pepper genome provides detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet 118:1279–1293

    Article  CAS  Google Scholar 

  • Yamamoto E, Matsunaga H, Onogi A, Kajiya-Kanegae H, Minamikawa M et al (2016) A simulation-based breeding design that uses whole-genome prediction in tomato. Sci Rep 6:19454

    Article  CAS  Google Scholar 

  • Yamamoto T, Kashojiya S, Kamimura S, Kameyama T, Ariizumi T et al (2018) Application and development of genome editing technologies to the Solanaceae plants. Plant Physiol Biochem. https://doi.org/10.1016/j.plaphy.2018.02.019

  • Yi G, Lee JM, Lee S, Choi D, Kim BD (2006) Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor Appl Genet 114:113–130

    Article  CAS  Google Scholar 

  • Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK et al (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Shirasawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shirasawa, K., Ban, T., Nagata, N., Murakana, T. (2019). Impact of Genomics on Capsicum Breeding. In: Ramchiary, N., Kole, C. (eds) The Capsicum Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-319-97217-6_13

Download citation

Publish with us

Policies and ethics