Skip to main content

Impact of Nonlinear Effects and Mitigation on Coherent Optical Systems

  • Chapter
  • First Online:
Optical Communications

Abstract

This chapter presents an overview of modeling and mitigation of nonlinear effects on coherent optical systems. The Gaussian Noise (GN) is presented as an efficient method to analyze the nonlinear propagation in an uncompensated link and used to estimate the system performance. In order to compensate for the nonlinear impairments, four digital techniques were investigated: Digital Back-Propagation (DBP), DBP with coupled equations, Volterra series, and Maximum Likelihood Sequence Estimator (MLSE). Different scenarios were used to validate the algorithms. Finally, a nonlinear estimation algorithm based on Steepest Descent Algorithm (SDA) is shown and experimentally validated in an unrepeatered optical system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Nevertheless, the inverse VSTF can also be easily generalized to any other heterogeneous optical fiber link.

References

  1. Yu J, Zhang J, Jia Z, Li X, Chien HC, Cai Y, Li F, Wang Y, Xiao X (2015) Transmission of \(8\times 128.8\) Gbaud single-carrier PDM-QPSK signal over 2800-km EDFA-only SMF-28 link. In: European conference on optical communication (ECOC)

    Google Scholar 

  2. Chandrasekhar S, Liu X (2010) Terabit superchannels for high spectral efficiency transmission. In: European conference on optical communication (ECOC)

    Google Scholar 

  3. Sano A, Yamada E, Masuda H, Yamazaki E, Kobayashi T, Yoshida E, Miyamoto Y, Kudo R, Ishihara K, Takatori Y (2009) No-guard-interval coherent optical OFDM for 100-Gb/s long-haul WDM transmission. J Lightwave Technol 27(16):3705–3713

    Article  Google Scholar 

  4. Bosco G, Curri V, Carena A, Poggiolini P, Forghieri F (2011) On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers. J Lightwave Technol 29(1):53–61

    Article  Google Scholar 

  5. Li C, Zhang X, Li H, Li C, Luo M, Li Z, Xu J, Yang Q, Yu S (2014) Experimental demonstration of 429.96-Gb/s OFDM/OQAM-64QAM over 400-km SSMF transmission within a 50-GHz grid. IEEE Photonics J 6(4):1–8

    Google Scholar 

  6. Maher R, Croussore K, Lauermann M, Going R, Xu X, Rahn J (2017) Constellation shaped 66 GBd DP-1024QAM transceiver with 400 km transmission over standard SMF. In: European conference on optical communication (ECOC)

    Google Scholar 

  7. Ip E, Kahn JM (2008) Compensation of dispersion and nonlinear impairments using digital backpropagation. J Lightwave Technol 26(20):3416–3425

    Article  Google Scholar 

  8. Guiomar FP, Amado SB, Reis JD, Rossi SM, Chiuchiarelli A, Oliveira JR, Teixeira AL, Pinto AN (2015) Ultra-long-haul 400G superchannel transmission with multi-carrier nonlinear equalization. In: European conference on optical communication (ECOC)

    Google Scholar 

  9. Parahyba VE, Rosa ES, Diniz JC, Ribeiro VB, Oliveira JC (2012) Nonlinear effects compensation analysis for dual polarization 16QAM optical coherent systems. In: Brazilian symposium on telecommunication

    Google Scholar 

  10. Jiang L, Yan L, Chen Z, Yi A, Pan Y, Pan W, Luo B (2016) Low-complexity and adaptive nonlinearity estimation module based on Godard’s error. IEEE Photonics J 8

    Google Scholar 

  11. Nespola A, Straullu S, Carena A, Bosco G, Cigliutti R, Curri V, Poggiolini P, Hirano M, Yamamoto Y, Sasaki T et al (2014) GN-model validation over seven fiber types in uncompensated PM-16QAM Nyquist-WDM links. IEEE Photonics Technol Lett 26(2):206–209

    Article  Google Scholar 

  12. Carena A, Curri V, Bosco G, Poggiolini P, Forghieri F (2012) Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links. J of Lightwave Technol 30(10):1524–1539

    Article  Google Scholar 

  13. Carena A, Bosco G, Curri V, Poggiolini P, Forghieri F (2013) Impact of the transmitted signal initial dispersion transient on the accuracy of the GN-model of non-linear propagation. In: European conference on optical communication (ECOC)

    Google Scholar 

  14. Nespola A, Straullu S, Carena A, Bosco G, Cigliutti R, Curri V, Poggiolini P, Hirano M, Yamamoto Y, Sasaki T, Bauwelinck J, Verheyen K, Forghieri F (2013) Extensive fiber comparison and GN-model validation in uncompensated links using DAC-generated Nyquist-WDM PM-16QAM channels. In: Optical fiber communications conference and exhibition (OFC)

    Google Scholar 

  15. Nespola A, Straullu S, Carena A, Bosco G, Cigliutti R, Curri V, Poggiolini P, Hirano M, Yamamoto Y, Sasaki T, Bauwelinck J, Verheyen K, Forghieri F (2014) GN-model validation over seven fiber types in uncompensated PM-16QAM Nyquist-WDM links. IEEE Photonics Technol Lett 26(2):206–209

    Article  Google Scholar 

  16. Stark AJ, Hsueh YT, Detwiler TF, Filer MM, Tibuleac S, Ralph SE (2013) System performance prediction with the Gaussian noise model in 100G PDM-QPSK coherent optical networks. J Lightwave Technol 31(21):3352–3360

    Article  Google Scholar 

  17. Carena A, Bosco G, Curri V, Jiang Y, Poggiolini P, Forghieri F (2014) EGN model of non-linear fiber propagation. Optics express 22(13):16,335–16,362

    Article  Google Scholar 

  18. Poggiolini P, Bosco G, Carena A, Curri V, Jiang Y, Forghieri F (2015) A simple and effective closed-form GN model correction formula accounting for signal non-Gaussian distribution. J Lightwave Technol 33(2):459–473

    Article  Google Scholar 

  19. Poggiolini P, Nespola A, Jiang Y, Bosco G, Carena A, Bertignono L, Bilal SM, Abrate S, Forghieri F (2016) Analytical and experimental results on system maximum reach increase through symbol rate optimization. J Lightwave Technol 34(8):1872–1885

    Article  Google Scholar 

  20. Carena A, Guiomar F (2017) On the accumulation of non-linear interference in multi-subcarrier systems. In: European conference on optical communication (ECOC)

    Google Scholar 

  21. Dar R, Feder M, Mecozzi A, Shtaif M (2013) Properties of nonlinear noise in long, dispersion-uncompensated fiber links. Opt Express 21(22):25,685–25,699

    Article  Google Scholar 

  22. Jiang Y, Carena A, Poggiolini P, Forghieri F (2014) On the impact of non-linear phase-noise on the assessment of long-haul uncompensated coherent systems performance. In: European conference on optical communication (ECOC)

    Google Scholar 

  23. Agrawal GP (2007) Nonlinear fiber optics. Academic press

    Google Scholar 

  24. Parahyba V, Reis J, Ranzini S, Schneider E, Rosa E, Simões F, Diniz J, Carvalho L, Oliveira J, Oliveira J et al (2015) Performance against implementation of digital backpropagation for high-speed coherent optical systems. Electron Lett 51(14):1094–1096

    Article  Google Scholar 

  25. Savory SJ (2008) Digital filters for coherent optical receivers. Opt Express 16(2):804–817

    Article  Google Scholar 

  26. Menyuk C (1999) Application of multiple-length-scale methods to the study of optical fiber transmission. J Eng Math 36(1–2):113–136

    Article  MathSciNet  Google Scholar 

  27. Mateo EF, Zhou X, Li G (2011) Improved digital backward propagation for the compensation of inter-channel nonlinear effects in polarization-multiplexed WDM systems. Opt Express 19(2):570–583

    Article  Google Scholar 

  28. Fontaine NK, Scott RP, Zhou L, Soares FM, Heritage J, Yoo S (2010) Real-time full-field arbitrary optical waveform measurement. Nature Photonics 4(4):248

    Article  Google Scholar 

  29. Rossi SM, Souza AL, Chiuchiarelli A, Rozental VN, Rosa ES, Lima TC, Piven T, Vincentini R, Oliveira JR, Reis JD (2016) \(20\times 448\) Gb/s 56-GBd PM-16QAM transmission with wideband and spectrally-sliced receivers. In: Optical Fiber Communications Conference and Exhibition (OFC)

    Google Scholar 

  30. Parahyba VE, Ranzini SM, Souza AL, Rozental VN, Rossi SM, Chiuchiarelli A, Oliveira JR, Reis JD (2016) Digital nonlinear compensation for spectrally sliced optical receivers with MIMO reconstruction. IEEE Photonics Technol Lett 28(22):2589–2592

    Article  Google Scholar 

  31. Schetzen M (1980) The Volterra and Wiener theories of nonlinear systems. Wiley

    Google Scholar 

  32. Peddanarappagari KV, Brandt-Pearce M (1997) Volterra series transfer function of single-mode fibers. J Lightwave Technol 15(12):2232–2241

    Article  Google Scholar 

  33. Nazarathy M, Khurgin J, Weidenfeld R, Meiman Y, Cho P, Noe R, Shpantzer I, Karagodsky V (2008) Phased-array cancellation of nonlinear FWM in coherent OFDM dispersive multi-span links. Opt Express 16(20):15,777–15,810

    Article  Google Scholar 

  34. Xu B, Brandt-Pearce M (2003) Comparison of FWM- and XPM-induced crosstalk using the Volterra series transfer function method. J Lightwave Technol 21(1):40–53

    Article  Google Scholar 

  35. Reis JD, Teixeira AL (2010) Unveiling nonlinear effects in dense coherent optical WDM systems with Volterra series. Opt Express 18(8):8660–8670

    Article  Google Scholar 

  36. Reis JD, Neves DM, Teixeira AL (2012) Analysis of nonlinearities on coherent ultradense WDM-PONs using Volterra series. J Lightwave Technol 30(2):234–241

    Article  Google Scholar 

  37. Guiomar FP, Reis JD, Teixeira AL, Pinto AN (2011) Digital postcompensation using Volterra series transfer function. IEEE Photonics Technol Lett 23(19):1412–1414

    Article  Google Scholar 

  38. Guiomar FP, Reis JD, Teixeira AL, Pinto AN (2012) Mitigation of intra-channel nonlinearities using a frequency-domain Volterra series equalizer. Opt Express 20(2):1360–1369

    Article  Google Scholar 

  39. Guiomar FP, Reis JD, Carena A, Bosco G, Teixeira AL, Pinto AN (2013) Experimental demonstration of a frequency-domain Volterra series nonlinear equalizer in polarization-multiplexed transmission. Opt Express 21(1):276–288

    Article  Google Scholar 

  40. Weidenfeld R, Nazarathy M, Noe R, Shpantzer I (2009) Volterra nonlinear compensation of 112 Gb/s ultra-long-haul coherent optical OFDM based on frequency-shaped decision feedback. In: European conference on optical communication (ECOC)

    Google Scholar 

  41. Weidenfeld R, Nazarathy M, Noe R, Shpantzer I (2010) Volterra nonlinear compensation of 100G coherent OFDM with baud-rate ADC, tolerable complexity and low intra-channel FWM/XPM error propagation. In: Optical fiber communications conference and exhibition (OFC)

    Google Scholar 

  42. Liu L, Li L, Huang Y, Cui K, Xiong Q, Hauske FN, Xie C, Cai Y (2012) Intrachannel nonlinearity compensation by inverse Volterra series transfer function. J Lightwave Technol 30(3):310–316

    Article  Google Scholar 

  43. Shulkind G, Nazarathy M (2013) Nonlinear digital back propagation compensator for coherent optical OFDM based on factorizing the Volterra series transfer function. Opt Express 21(11):13,145–13,161

    Article  Google Scholar 

  44. Bakhshali A, Chan WY, Gao Y, Cartledge JC, O’Sullivan M, Laperle C, Borowiec A, Roberts K (2014) Complexity reduction of frequency-domain Volterra-based nonlinearity post-compensation using symmetric electronic dispersion compensation. In: European conference on optical communication (ECOC)

    Google Scholar 

  45. Bakhshali A, Chan WY, Cartledge JC, OSullivan M, Laperle C, Borowiec A, Roberts K (2016) Frequency-domain volterra-based equalization structures for efficient mitigation of intrachannel Kerr nonlinearities. J Lightwave Technol 34(8):1770–1777

    Article  Google Scholar 

  46. Guiomar FP, Pinto AN (2013) Simplified Volterra series nonlinear equalizer for polarization-multiplexed coherent optical systems. J Lightwave Technol 31(23):3879–3891

    Article  Google Scholar 

  47. Guiomar FP, Amado SB, Carena A, Bosco G, Nespola A, Teixeira AL, Pinto AN (2015a) Fully-blind linear and nonlinear equalization for 100G PM-64QAM optical systems. J Lightwave Technol 33(7):1265–1274

    Article  Google Scholar 

  48. Guiomar FP, Amado SB, Martins CS, Pinto AN (2015b) Time domain Volterra-based digital backpropagation for coherent optical systems. J Lightwave Technol 33(15):3170–3181

    Article  Google Scholar 

  49. Amado SB, Guiomar FP, Muga NJ, Ferreira RM, Reis JD, Rossi SM, Chiuchiarelli A, Oliveira JRF, Teixeira AL, Pinto AN (2016) Low complexity advanced DBP algorithms for ultra-long-haul 400G transmission systems. J Lightwave Technol 34(8):1793–1799

    Article  Google Scholar 

  50. Forney G (1972) Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference. IEEE Trans Inf Theory 18(3):363–378

    Article  MathSciNet  Google Scholar 

  51. Viterbi A (1967) Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans Inf Theory 13(2):260–269

    Article  Google Scholar 

  52. Stojanovic N, Huang Y, Hauske FN, Fang Y, Chen M, Xie C, Xiong Q (2011) MLSE-based nonlinearity mitigation for WDM 112 Gbit/s PDM-QPSK transmissions with digital coherent receiver. In: Optical fiber communications conference and exhibition (OFC)

    Google Scholar 

  53. Alfiad MS, Van den Borne D, Hauske FN, Napoli A, Koonen A, de Waardt H (2009) Maximum-likelihood sequence estimation for optical phase-shift keyed modulation formats. J Lightwave Technol 27(20):4583–4594

    Article  Google Scholar 

  54. Oda S, Tanimura T, Hoshida T, Ohshima C, Nakashima H, Tao Z, Rasmussen JC (2009) 112 Gb/s DP-QPSK transmission using a novel nonlinear compensator in digital coherent receiver. In: Optical fiber communications conference and exhibition (OFC)

    Google Scholar 

  55. Mussolin M, Rafique D, Mrtensson J, Forzati M, Fischer JK, Molle L, Nlle M, Schubert C, Ellis AD (2011) Polarization multiplexed 224 Gb/s 16QAM transmission employing digital back-propagation. In: European conference on optical communication (ECOC)

    Google Scholar 

  56. Lin CY, Napoli A, Spinnler B, Sleiffer V, Rafique D, Kuschnerov M, Bohn M, Schmauss B (2014) Adaptive digital back-propagation for optical communication systems. In: Optical fiber communications conference and exhibition (OFC)

    Google Scholar 

  57. Chen Z, Yan L, Yi A, Jiang L, Pan YPW, Luo B (2015) Low complexity and adaptive nonlinearity compensation. In: Conference on lasers and electro-optics (CLEO)

    Google Scholar 

  58. Silva EP, Asif R, Larsen KJ, Zibar D (2015) Nonlinear compensation with modified adaptive digital backpropagation in flexigrid networks. In: Conference on lasers and electro-optics (CLEO)

    Google Scholar 

  59. Yao H, W L, Han J, He Z, Yuan Z, Hu Q, Yang Q, Yu S, (2016) A modified adaptive DBP for DP-16QAM coherent optical system. IEEE photonics technology letters 28:2511–2514

    Google Scholar 

  60. Schmogrow R, Nebendahl B, Winter M, Josten A, Hillerkuss D, Koenig S, Meyer J, Dreschmann M, Huebner M, Koos C, Becker J, Freude W, Leuthold J (2012) Error vector magnitude as a performance measure for advanced modulation formats. IEEE Photonics Technol Lett 24:61–63

    Article  Google Scholar 

  61. Júnior JHC, Souza ALN, Januário JCSS, Rossi SM, Chiuchiarelli A, Reis JD (2017) Single-Carrier 400G unrepeatered WDM transmission using nonlinear compensation and DD-LMS with FEC feedback. In: International microwave and optoelectronics conference (IMOC)

    Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Miquel Garrich Alabarce for reviewing a draft of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stenio M. Ranzini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ranzini, S.M., Parahyba, V.E., Júnior, J.H.d.C., Guiomar, F., Carena, A. (2019). Impact of Nonlinear Effects and Mitigation on Coherent Optical Systems. In: Paradisi, A., Carvalho Figueiredo, R., Chiuchiarelli, A., de Souza Rosa, E. (eds) Optical Communications. Telecommunications and Information Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-97187-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-97187-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-97186-5

  • Online ISBN: 978-3-319-97187-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics