Skip to main content

Robotic CABG

  • Chapter
  • First Online:
Robotic-Assisted Minimally Invasive Surgery

Abstract

Surgical revascularization remains the gold standard treatment for patients with complex coronary artery disease. Although most patients undergo on-pump coronary artery bypass (CABG) via median sternotomy, minimally invasive approaches that utilize the surgical robot are gaining in popularity. Such approaches often combine the benefits of a LIMA-LAD bypass with the less-invasive nature of PCI in order to maximize patient benefit while minimizing surgical trauma and risk. Robotic CABG is frequently performed as a hybrid procedure wherein the robot is utilized to harvest and prepare the mammary artery for open LIMA-LAD bypass via small anterior mini-thoracotomy (MIDCAB). Alternatively, robotic CABG may be performed as a totally endoscopic procedure (TECAB) for one or more vessel bypasses. Given the technical complexity associated with TECAB, it has not been widely adopted. There is a steep learning curve associated with robotic CABG; however, experienced operators have achieved results comparable to traditional open CABG in select patients. Future studies will look to simplify the nature of robotic CABG, increase applicability to the general cardiothoracic surgical population, and provide long-term follow-up data regarding outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heron M. Deaths: leading causes for 2014. Natl Vital Stat Rep. 2016;65(5):1–96.

    PubMed  Google Scholar 

  2. Organization WH. The top 10 causes of death. 2017 http://www.who.int/mediacentre/factsheets/fs310/en/. Accessed 14 Aug 2017.

  3. Mueller RL, Rosengart TK, Isom OW. The history of surgery for ischemic heart disease. Ann Thorac Surg. 1997;63(3):869–78.

    Article  CAS  Google Scholar 

  4. Tatoulis J, Buxton BF, Fuller JA. Patencies of 2127 arterial to coronary conduits over 15 years. Ann Thorac Surg. 2004;77(1):93–101.

    Article  Google Scholar 

  5. Bonaros N, Schachner T, Wiedemann D, et al. Quality of life improvement after robotically assisted coronary artery bypass grafting. Cardiology. 2009;114(1):59–66.

    Article  Google Scholar 

  6. Bonatti J, Ramahi J, Hasan F, et al. Long-term results after robotically assisted coronary bypass surgery. Ann Cardiothorac Surg. 2016;5(6):556–62.

    Article  Google Scholar 

  7. Leyvi G, Forest SJ, Srinivas VS, et al. Robotic coronary artery bypass grafting decreases 30-day complication rate, length of stay, and acute care facility discharge rate compared with conventional surgery. Innovations. 2014;9(5):361–7. discussion 367

    PubMed  Google Scholar 

  8. Oz MC, Argenziano M, Rose EA. What is 'minimally invasive' coronary bypass surgery? Experience with a variety of surgical revascularization procedures for single-vessel disease. Chest. 1997;112(5):1409–16.

    Article  CAS  Google Scholar 

  9. Loulmet D, Carpentier A, d'Attellis N, et al. Endoscopic coronary artery bypass grafting with the aid of robotic assisted instruments. J Thorac Cardiovasc Surg. 1999;118(1):4–10.

    Article  CAS  Google Scholar 

  10. Shennib H, Bastawisy A, McLoughlin J, Moll F. Robotic computer-assisted telemanipulation enhances coronary artery bypass. J Thorac Cardiovasc Surg. 1999;117(2):310–3.

    Article  CAS  Google Scholar 

  11. Angelini GD, Wilde P, Salerno TA, Bosco G, Calafiore AM. Integrated left small thoracotomy and angioplasty for multivessel coronary artery revascularisation. Lancet. 1996;347(9003):757–8.

    Article  CAS  Google Scholar 

  12. Halkos ME, Walker PF, Vassiliades TA, et al. Clinical and angiographic results after hybrid coronary revascularization. Ann Thorac Surg. 2014;97(2):484–90.

    Article  Google Scholar 

  13. Harskamp RE, Vassiliades TA, Mehta RH, et al. Comparative effectiveness of hybrid coronary revascularization vs coronary artery bypass grafting. J Am Coll Surg. 2015;221(2):326–34. e321

    Article  Google Scholar 

  14. Kofler M, Stastny L, Reinstadler SJ, et al. Robotic Versus Conventional Coronary Artery Bypass Grafting: Direct Comparison of Long-Term Clinical Outcome. Innovations. 2017;12:239–46.

    PubMed  Google Scholar 

  15. Whellan DJ, McCarey MM, Taylor BS, et al. Trends in robotic-assisted coronary artery bypass grafts: a study of the Society of Thoracic Surgeons adult cardiac surgery database, 2006 to 2012. Ann Thorac Surg. 2016;102(1):140–6.

    Article  Google Scholar 

  16. Langer NB, Argenziano M. Minimally invasive cardiovascular surgery: incisions and approaches. Methodist Debakey Cardiovasc J. 2016;12(1):4–9.

    Article  Google Scholar 

  17. Canale LS, Mick S, Mihaljevic T, Nair R, Bonatti J. Robotically assisted totally endoscopic coronary artery bypass surgery. J Thorac Dis. 2013;5(Suppl 6):S641–9.

    PubMed  PubMed Central  Google Scholar 

  18. Ejiofor JI, Leacche M, Byrne JG. Robotic CABG and hybrid approaches: the current landscape. Prog Cardiovasc Dis. 2015;58(3):356–64.

    Article  Google Scholar 

  19. Kon ZN, Brown EN, Tran R, et al. Simultaneous hybrid coronary revascularization reduces postoperative morbidity compared with results from conventional off-pump coronary artery bypass. J Thorac Cardiovasc Surg. 2008;135(2):367–75.

    Article  Google Scholar 

  20. Bonatti J, Schachner T, Bonaros N, et al. Technical challenges in totally endoscopic robotic coronary artery bypass grafting. J Thorac Cardiovasc Surg. 2006;131(1):146–53.

    Article  CAS  Google Scholar 

  21. Harskamp RE, Zheng Z, Alexander JH, et al. Status quo of hybrid coronary revascularization for multi-vessel coronary artery disease. Ann Thorac Surg. 2013;96(6):2268–77.

    Article  Google Scholar 

  22. DeRose JJ. Current state of integrated “hybrid” coronary revascularization. Semin Thorac Cardiovasc Surg. 2009;21(3):229–36.

    Article  Google Scholar 

  23. Cisowski M, Morawski W, Drzewiecki J, et al. Integrated minimally invasive direct coronary artery bypass grafting and angioplasty for coronary artery revascularization. Eur J Cardio-Thoracic Surg. 2002;22(2):261–5.

    Article  Google Scholar 

  24. Davidavicius G, Van Praet F, Mansour S, et al. Hybrid revascularization strategy: a pilot study on the association of robotically enhanced minimally invasive direct coronary artery bypass surgery and fractional-flow-reserve-guided percutaneous coronary intervention. Circulation. 2005;112(9 Suppl):I317–22.

    PubMed  Google Scholar 

  25. Gao C, Yang M, Wu Y, et al. Hybrid coronary revascularization by endoscopic robotic coronary artery bypass grafting on beating heart and stent placement. Ann Thorac Surg. 2009;87(3):737–41.

    Article  Google Scholar 

  26. Gilard M, Bezon E, Cornily JC, et al. Same-day combined percutaneous coronary intervention and coronary artery surgery. Cardiology. 2007;108(4):363–7.

    Article  Google Scholar 

  27. Katz MR, Van Praet F, de Canniere D, et al. Integrated coronary revascularization: percutaneous coronary intervention plus robotic totally endoscopic coronary artery bypass. Circulation. 2006;114(1 Suppl):I473–6.

    PubMed  Google Scholar 

  28. Kiaii B, McClure RS, Stewart P, et al. Simultaneous integrated coronary artery revascularization with long-term angiographic follow-up. J Thorac Cardiovasc Surg. 2008;136(3):702–8.

    Article  Google Scholar 

  29. Lloyd CT, Calafiore AM, Wilde P, et al. Integrated left anterior small thoracotomy and angioplasty for coronary artery revascularization. Ann Thorac Surg. 1999;68(3):908–11. discussion 911-902

    Article  CAS  Google Scholar 

  30. Riess FC, Bader R, Kremer P, et al. Coronary hybrid revascularization from January 1997 to January 2001: a clinical follow-up. Ann Thorac Surg. 2002;73(6):1849–55.

    Article  Google Scholar 

  31. Stahl KD, Boyd WD, Vassiliades TA, Karamanoukian HL. Hybrid robotic coronary artery surgery and angioplasty in multivessel coronary artery disease. Ann Thorac Surg. 2002;74(4):S1358–62.

    Article  Google Scholar 

  32. Vassiliades TA Jr, Douglas JS, Morris DC, et al. Integrated coronary revascularization with drug-eluting stents: immediate and seven-month outcome. J Thorac Cardiovasc Surg. 2006;131(5):956–62.

    Article  Google Scholar 

  33. Wittwer T, Cremer J, Boonstra P, et al. Myocardial "hybrid" revascularisation with minimally invasive direct coronary artery bypass grafting combined with coronary angioplasty: preliminary results of a multicentre study. Heart. 2000;83(1):58–63.

    Article  CAS  Google Scholar 

  34. Zenati M, Cohen HA, Griffith BP. Alternative approach to multivessel coronary disease with integrated coronary revascularization. J Thorac Cardiovasc Surg. 1999;117(3):439–44. discussion 444-436

    Article  CAS  Google Scholar 

  35. Harskamp RE, Brennan JM, Xian Y, et al. Practice patterns and clinical outcomes after hybrid coronary revascularization in the United States: an analysis from the society of thoracic surgeons adult cardiac database. Circulation. 2014;130(11):872–9.

    Article  Google Scholar 

  36. Seco M, Edelman JJ, Yan TD, Wilson MK, Bannon PG, Vallely MP. Systematic review of robotic-assisted, totally endoscopic coronary artery bypass grafting. Annals of cardiothoracic surgery. 2013;2(4):408–18.

    PubMed  PubMed Central  Google Scholar 

  37. Srivastava S, Barrera R, Quismundo S. One hundred sixty-four consecutive beating heart totally endoscopic coronary artery bypass cases without intraoperative conversion. Ann Thorac Surg. 2012;94(5):1463–8.

    Article  Google Scholar 

  38. Argenziano M, Katz M, Bonatti J, et al. Results of the prospective multicenter trial of robotically assisted totally endoscopic coronary artery bypass grafting. Ann Thorac Surg. 2006;81(5):1666–74. discussion 1674-1665

    Article  Google Scholar 

  39. Yang M, Wu Y, Wang G, Xiao C, Zhang H, Gao C. Robotic Total arterial off-pump coronary artery bypass grafting: seven-year single-center experience and long-term follow-up of graft patency. Ann Thorac Surg. 2015;100(4):1367–73.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micahel Argenziano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

DeRoo, S.C., Argenziano, M. (2019). Robotic CABG. In: Tsuda, S., Kudsi, O. (eds) Robotic-Assisted Minimally Invasive Surgery . Springer, Cham. https://doi.org/10.1007/978-3-319-96866-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96866-7_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96865-0

  • Online ISBN: 978-3-319-96866-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics