Skip to main content

Non-Lipschitz Homogeneous Volterra Integral Equations

Theoretical Aspects and Numerical Treatment

  • Chapter
  • First Online:
Modern Mathematics and Mechanics

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

In this chapter we introduce a class of nonlinear Volterra integral equations (VIEs) which have certain properties that deviate from the standard results in the field of integral equations. Such equations arise from various problems in shock wave propagation with nonlinear flux conditions. The basic equation we will consider is the nonlinear homogeneous Hammerstein–Volterra integral equation of convolution type

$$\displaystyle u(t) = \int _0^t k(t-s) g(u(s))\,\mathrm {d}s. $$

When g(0) = 0, this equation has function u ≡ 0 as a solution (trivial solution). It is interesting to determine whether there exists a nontrivial solution or not. Classical results on integral equations are not to be applied here since most of them fail to assure the existence of other solution than the trivial one. Several characterizations of the existence of nontrivial solutions under different hypothesis on the kernel k and the nonlinearity g will be presented. We will also focus on the uniqueness of nontrivial solutions for such equations. In this regard, it is important to note that this equation can be written as a fixed point equation, so we shall also discuss the attracting character of the solutions with respect to the Picard iterations of the nonlinear integral operator defined by the RHS of the equation. Indeed we will give some examples for which those iterations do not converge to the nontrivial solutions for some initial conditions and we will study the attraction basins for such repelling solutions. Numerical estimation of the solutions is also discussed. Collocation methods have proven to be a suitable technique for such equations. However, classical results on numerical analysis of existence and convergence of collocation solutions cannot be considered here either since the non-Lipschitz character of the nonlinear operator prevents these results from being applied. New concepts on collocation solutions are introduced along with their corresponding results on existence and uniqueness of collocation solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If g(0) = g 0 > 0, then Eq. (14.1) could be writen as \(u(x) = f(x) + \int _0^xk(x-s)\tilde {g}(u(s))ds\), being \(f(x) = g_0\int _0^xk(s)ds\) and \(\tilde {g}(u) = g(u)-g_0\) and therefore the equation would be non-homogeneous.

References

  1. Arias, M.: Un nuevo tipo de ecuaciones integrales de abel no lineales. Ph.D. thesis, Dpto. Matemticas. Universidad de Extremadura, Av. Elvas s/n. 06011 Badajoz (1999)

    Google Scholar 

  2. Arias, M.R.: Existence and uniqueness of solutions for nonlinear volterra equations. Math. Proc. Camb. Philos. Soc. 129(2), 361370 (2000)

    Article  MathSciNet  Google Scholar 

  3. Arias, M., Benítez, R.: A note of the uniqueness and the attractive behaviour of solutions for nonlinear volterra equations. J. Integral Equ. Appl. 13(4), 305–310 (2001)

    Article  Google Scholar 

  4. Arias, M., Benítez, R.: Aspects of the behaviour of solutions of nonlinear abel equations. Nonlinear Anal. Theory Methods Appl. 54(7), 1241–1249 (2003)

    Article  MathSciNet  Google Scholar 

  5. Arias, M., Benítez, R.: Properties of solutions for nonlinear volterra integral equations. In: Discrete and Continuous Dynamical Systems, Proceedings of the 4th International Conference on Dynamical Systems and Differential Equations, pp. 42–47 (2003)

    Google Scholar 

  6. Arias, M., Castillo, J.: Attracting solutions of nonlinear volterra integral equations. J. Integral Equ. Appl. 11(3), 299–308 (1999). https://doi.org/10.1216/jiea/1181074279

    Article  MathSciNet  Google Scholar 

  7. Arias, M., Bentez, R., Bols, V.: Attraction properties of unbounded solutions for a nonlinear abel integral equation. J. Integral Equ. Appl. 19(4), 439–452 (2007)

    Article  MathSciNet  Google Scholar 

  8. Benítez, R., Bolós, V.: Existence and uniqueness of nontrivial collocation solutions of implicitly linear homogeneous volterra integral equations. J. Comput. Appl. Math. 235(12), 3661–3672 (2011)

    Article  MathSciNet  Google Scholar 

  9. Benítez, R., Bolós, V.: Blow-up collocation solutions of nonlinear homogeneous volterra integral equations. Appl. Math. Comput. 256, 754–768 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Brunner, H.: Implicitly linear collocation methods for nonlinear volterra equations. Appl. Numer. Math. 9(3), 235–247 (1992). https://doi.org/10.1016/0168-9274(92)90018-9

    Article  MathSciNet  Google Scholar 

  11. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations, vol. 15. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  12. Bushell, P.J.: On a class of volterra and fredholm non-linear integral equations. Math. Proc. Cambridge Philos. Soc. 79(2), 329335 (1976). https://doi.org/10.1017/S0305004100052324

    Article  MathSciNet  Google Scholar 

  13. Gripenberg, G., Londen, S., Staffans, O.: Volterra Integral and Functional Equations. Cambridge Ocean Technology Series. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  14. Maolepszy, T., Okrasiski, W.: Blow-up time for solutions to some nonlinear volterra integral equations. J. Math. Anal. Appl. 366(1), 372–384 (2010). https://doi.org/10.1016/j.jmaa.2010.01.030

    Article  MathSciNet  Google Scholar 

  15. Mydlarczyk, W.: The blow-up solutions of integral equations. Colloq. Math. 79(1), 147–156 (1999)

    Article  MathSciNet  Google Scholar 

  16. Nohel, J.: Some problems in nonlinear volterra integral equations. Bull. Am. Math. Soc. 68(4), 323–329 (1962)

    Article  MathSciNet  Google Scholar 

  17. Szwarc, R.: Attraction principle for nonlinear integral operators of the volterra type. J. Math. Anal. Appl. 170(2), 449–456 (1992). http://dx.doi.org/10.1016/0022-247X(92)90029-D

    Article  MathSciNet  Google Scholar 

  18. Sato, T.: Sur l’quation intgrale non linaire de volterra. Compos. Math. 11, 271–290 (1953)

    Google Scholar 

  19. Yang, Z.W., Brunner, H.: Blow-up behavior of collocation solutions to hammerstein-type volterra integral equations. SIAM J. Numer. Anal. 51(4), 2260–2282 (2013). https://doi.org/10.1137/12088238X

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Benítez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arias, M.R., Benítez, R., Bolós, V.J. (2019). Non-Lipschitz Homogeneous Volterra Integral Equations. In: Sadovnichiy, V., Zgurovsky, M. (eds) Modern Mathematics and Mechanics. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-96755-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96755-4_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96754-7

  • Online ISBN: 978-3-319-96755-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics