Skip to main content

Incorporation of Nanoparticles into Plant Nutrients: The Real Benefits

  • Chapter
  • First Online:
Agricultural Nanobiotechnology

Abstract

The nanosciences and nanotechnology have been the most novel and attractive fields in recent years; their applications have spread through different and diverse areas, i.e., medicine, chemistry, biology, agriculture, etc. In agriculture the possibilities for application and innovation are enormous, and these applications have resulted in essential improvements in central plant and crop aspects. The incorporation of nanoparticles into nutritional plants has increased the yield of nutrient values and also has played a vital role in developing improved systems for analyzing ecological conditions and increasing the capacity of crops to absorb nutrients or pesticides. This chapter discusses and summarizes some updated evidence regarding the effects of nanoparticles on the yield and quality of crops, and it highlights how nanoscience and nanotechnologies might revolutionize the nutrition of higher plants in the short term.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adhikari T, Kundu S, Rao AS (2013) Impact of SiO2 and Mo nano particles on seed germination of rice (Oryza sativa L.). Int J Agric Food Sci Technol 4:809–816

    Google Scholar 

  • Angus JF, Bowden JW, Keating BA (1993) Modelling nutrient responses in the field. In: Barrow NJ (ed) Plant nutrition: from genetic engineering to field practice. Kluwer Academic Publishers, Boston, pp 59–68

    Chapter  Google Scholar 

  • Antisari LV, Carbone S, Gati A, Vianello G, Nannipieri P (2015) Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environ Sci Pollut Res 22:1841–1853. https://doi.org/10.1007/s11356-014-3509-0

    Article  CAS  Google Scholar 

  • Arnold DI, Stout PR (1939) The essentiality of certain elements in minute quantity for plant with special reference to copper. Plant Physiol 14:371–375

    Article  Google Scholar 

  • Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH (2014) Review on materials & methods to produce controlled release coated urea fertilizer. J Control Release 181:11–21

    Article  CAS  Google Scholar 

  • Barrios AC, Rico CM, Trujillo-Reyes J, Medina-Velo LA, Peralta-Videa JR, Gardea-Torresdey JL (2016) Effects of uncoated and citric acid coated cerium oxide nanoparticles, bulk cerium oxide, cerium acetate, and citric acid on tomato plants. Sci Total Environ 563–564:956–964. https://doi.org/10.1016/j.scitotenv.2015.11.143

    Article  CAS  PubMed  Google Scholar 

  • Behera SK, Shukla AK (2015) Spatial distribution of surface soil acidity, electrical conductivity, soil organic carbon content and exchangeable potassium, calcium and magnesium in some cropped acid soils of India. Land Degrad Dev 26:71–79

    Article  Google Scholar 

  • Bradfield SJ, Kumar P, White JC, Ebbs SD (2017) Zinc, copper, or cerium accumulation from metal oxide nanoparticles or ions in sweet potato: yield effects and projected dietary intake from consumption. Plant Physiol Biochem 110:128–137

    Article  CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25:241–258

    Article  CAS  Google Scholar 

  • Chen D, Szostak P, Wei Z, Xiao R (2016) Reduction of orthophosphates loss in agricultural soil by nano calcium sulfate. Sci Total Environ 539:381–387

    Article  CAS  Google Scholar 

  • Dasgupta N, Ranian S, Mundekkad D, Ramalingam C, Shanker R, Kumar A (2015) Nanotechnology in agro-food: from field to plate. Food Res Int 69:381–400

    Article  Google Scholar 

  • Davarpanah S, Tehranifar A, Davarynejad G, Abadía J, Khorasani R (2016) Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci Hortic 210:57–64. https://doi.org/10.1016/j.scienta.2016.07.003

    Article  CAS  Google Scholar 

  • De la Rosa G, Garcia-Castaneda C, Vazquez-Nunez E, Alonso-Castro AJ, Basurto-Islas G, Mendoza A, Cruz-Jimenez G, Molina C (2017) Physiological and biochemical response of plants to engineered NMs: implications on future design. Plant Physiol Biochem 110:226–235

    Google Scholar 

  • Deepa M, Sudhakar P, Nagamadhuri KV, Reddy KB, Krishna TG, Prasad TNVKV (2015) First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique. Appl Nanosci 5:545–551. https://doi.org/10.1007/s13204-014-0348-8

    Article  CAS  Google Scholar 

  • Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Commun Soil Sci Plant Anal 45:11. https://doi.org/10.1080/00103624.2013.863911

    Article  CAS  Google Scholar 

  • Dimkpa CO, Bindraban PS (2017) Nanofertilizers: new products for the industry? J Agric Food Chem. https://doi.org/10.1021/acs.jafc.7b02150

    Article  Google Scholar 

  • Dobermann S, Cassman KG, Walters DT, Witt C (2005) Balancing short-term and long-term goals in nutrient management. Better Crops 89–4:16–18

    Google Scholar 

  • Duhan JS, Kumar R, Kumar N, Kaur P, Nehra K, Duhan S (2017) Nanotechnology: the new perspective in precision agriculture. Biotechnol Rep 15:11–23

    Article  Google Scholar 

  • Elsaesser A, Howard CV (2012) Toxicology of nanoparticles. Adv Drug Deliv Rev 64:129–137. https://doi.org/10.1016/j.addr.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  • Farrukh MA, Naseem F (2014) US Patent No. 8,911,526. US Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Ferguson RB, Nienaber JA, Eigenberg RA, Woodbury BL (2005) Long-term effects of sustained beef feedlot manure application on soil nutrients, corn silage yield, and nutrient uptake. J Environ Qual 34:1672–1681

    Article  CAS  Google Scholar 

  • Fernández-Luqueño F, López-Valdez F, González-Rosas A, Miranda-Gómez JM (2016) Bionanotechnology for the food production: challenges and perspectives. In: Bustos-Vázquez MA, del Ángel-del Ángel JA (eds) Tecnología y desarrollo sustentable: avances en el aprovechamiento de recursos agroindustriales. Universidad Autónoma de Tamaulipas y Colofón, Mexico, pp 293–305

    Google Scholar 

  • Ghormade V, Deshpande MV, Paknikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    Article  CAS  Google Scholar 

  • Hassani A, Tajali AA, Mazinani SMH, Hassani M (2015) Studying the conventional chemical fertilizers and nano-fertilizer of iron, zinc, and potassium on quantitative yield of the medicinal plant of peppermint in Khuzestan. Int J Agric Innov Res 3:2319–1473

    Google Scholar 

  • Helper PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155

    Article  Google Scholar 

  • Herrick JE (2000) Soil quality: an indicator of sustainable land management? Appl Soil Ecol 15:75–83

    Article  Google Scholar 

  • Huang S, Wang L, Liu L, Hou Y, Li L (2015) Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agron Sustain Dev 35:369–400

    Article  Google Scholar 

  • Iannone MF, Groppa MD, de Sousa ME, Fernández van Raap MB, Benavides MP (2017) Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: evaluation of oxidative damage. Environ Exp Bot 131:77–88

    Article  Google Scholar 

  • Imada K, Sakai S, Kajihara H, Tanaka S, Ito S (2016) Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathol 65:551–560

    Article  CAS  Google Scholar 

  • Iavicoli I, Leso V, Beezhold DH, Shvedova AA (2017) Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol Appl Pharmacol 329:96–111

    Article  CAS  Google Scholar 

  • Juan ZOU, Lu JW, Li YS, Li XK (2011) Regional evaluation of winter rapeseed response to K fertilization, K use efficiency, and critical level of soil K in the Yangtze River Valley. Agr Sci China 10:911–920

    Article  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70

    Article  CAS  Google Scholar 

  • Knapp AK, Smith MD, Hobbie SE, Collins SL, Fahey TJ, Hansen GJA, Landis DA, La Pierre KJ, Melillo JM, Seastedt TR, Shaver GR, Webster JR (2012) Past, present, and future roles of long-term experiments in the LTER network. Bioscience 62:377–389

    Article  Google Scholar 

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). Biotechnology 13:37

    PubMed  Google Scholar 

  • Kottegoda N, Munaweera I, Madusanka N, Karunaratne V (2011) A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Curr Sci India 101:73–78

    CAS  Google Scholar 

  • Kottegoda N, Sandaruwan C, Priyadarshana G, Siriwardhana A, Rathnayake UA, Berugoda Arachchige DM, Kumarasinge AR, Dahanayake D, Karunaratne V, Amaratunga GA (2017) Urea–hydroxyapatite nanohybrids for slow release of nitrogen. ACS Nano 11:1214–1221. https://doi.org/10.1021/acsnano.6b07781

    Article  CAS  PubMed  Google Scholar 

  • Le Bot J, Adamowicz S, Robin P (1998) Modelling plant nutrition of horticultural crops: a review. Sci Hortic 74:47–82

    Article  Google Scholar 

  • León-Silva S, Fernández-Luqueño F, López-Valdez F (2016) Silver nanoparticles (AgNP) in the environment: a review of potential risks on human and environmental health. Water Air Soil Pollut 227(9):306

    Article  Google Scholar 

  • Li J, Hu J, Ma C, Wang Y, Wu C, Huang J, Xing B (2016) Uptake, translocation and physiological effects of magnetic iron oxide (γ-FeO) nanoparticles in corn (Zea mays L.). Chemosphere 159:326–334

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:6. https://doi.org/10.1038/srep05686

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2017) Nanofertilizers. In: Encyclopedia of soil science, 3rd edn, pp 1511–1515. https://doi.org/10.1081/E-ESS3-120053199

    Chapter  Google Scholar 

  • Liu XM, Zhang FD, Zhang SQ, He XS, Wang RF, Feng ZB, Wang YJ (2005) Responses of peanut to nano-calcium carbonate. Plant Nutr Fert Sci 11:385–389

    Google Scholar 

  • Liu XM, Feng ZB, Zhang FD, Zhang SQ, He XS (2006) Preparation and testing of cementing and coating nano-subnanocomposites of slow/controlled-release fertilizer. Agr Sci China 5:700–706

    Article  Google Scholar 

  • Liu R, Zhang H, Lal R (2016) Effects of stabilized nanoparticles of copper, zinc, manganese, and iron oxides in low concentrations on lettuce (Lactuca sativa) seed germination: nanotoxicants or nanonutrients? Water Air Soil Pollut 227:42

    Article  Google Scholar 

  • Liu SK, Han C, Liu JM, Li H (2017) Hydrothermal decomposition of potassium feldspar under alkaline conditions. RSC Adv 5:93301–93309

    Article  Google Scholar 

  • Mala R, Celsia Arul Selvaraj R, Barathi Sundaram V, Blessina Siva Shanmuga Rajan R, Maheswari Gurusamy U (2017) Evaluation of nano structured slow release fertilizer on the soil fertility, yield and nutritional profile of Vigna radiata. Recent Pat Nanotechnol 11:50–62. https://doi.org/10.2174/1872210510666160727093554

    Article  CAS  PubMed  Google Scholar 

  • Mandal A, Patra AK, Singh D, Swarup A, Masto RE (2007) Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour Technol 98:3585–3592

    Article  CAS  Google Scholar 

  • Masclaux-Daubresse C, Chen Q, Havé M (2017) Regulation of nutrient recycling via autophagy. Curr Opin Plant Biol 39:8–17

    Article  CAS  Google Scholar 

  • Mashhadi S, Javadian H, Tyagi I, Agarwal S, Gupta VK (2016) The effect of Na2SO4 concentration in aqueous phase on the phase inversion temperature of lemon oil in water nano-emulsions. J Mol Liq 215:454–460

    Article  CAS  Google Scholar 

  • Medina-Pérez G, Fernández-Luqueño F, Trejo-Téllez LI, López-Valdez F, Pampillón-González L (2018) Growth and development of common bean (Phaseolus vulgaris L.) var. pinto Saltillo exposed to iron, titanium, and zinc oxide nanoparticles in an agricultural soil. Appl Ecol Environ Res 16(2):1883–1897

    Article  Google Scholar 

  • Medina-Pérez G, Fernández-Luqueño F, Vazquez-Nuñez E, López-Valdez F, Prieto-Mendez J, Madariaga-Navarrete A, Miranda-Arámbula M (in press) Remediation of polluted soils using nanotechnologies: environmental benefits and risks. Pol J Environ Stud

    Google Scholar 

  • Mikhak A, Sohrabi A, Kassaee MZ, Feizian M (2017) Synthetic nanozeolite/nanohydroxyapatite as a phosphorus fertilizer for German chamomile (Matricaria chamomilla L.). Ind Crop Prod 95:444–452

    Article  CAS  Google Scholar 

  • Moghaddasi S, Khoshgoftarmanesh AH, Karimzadeh F, Chaney RL (2013) Preparation of nano-particles from waste tire rubber and evaluation of their effectiveness as zinc source for cucumber in nutrient solution culture. Sci Hortic 160:398–403

    Article  CAS  Google Scholar 

  • Morales-Díaz AB, Ortega-Ortíz H, Juárez-Maldonado A, Cadenas-Pliego G, González-Morales S, Benavides-Mendoza A (2017) Application of nanoelements in plant nutrition and its impact in ecosystems. Nanosci Nanotechnol 8:1–13

    Google Scholar 

  • Mousavi SR, Shahsavari M, Rezaei M (2011) A general overview on manganese (Mn) importance for crops production. Aust J Appl Sci 5:1799–1803

    Google Scholar 

  • Mukherjee A, Peralta-Videa JR, Gardea-Torresdey J, White JC (2016) Effects and uptake of nanoparticles in plants. In: Xing B, Vecitis CD, Senesi N (eds) Engineered nanoparticles and the environment: biophysicochemical processes and toxicity. Wiley, Hoboken. https://doi.org/10.1002/9781119275855.ch20

    Chapter  Google Scholar 

  • Murphy LS, Ellis R Jr, Adriano DC (1981) Phosphorus-micronutrient interaction effects on crop production. J Plant Nutr 3(1–4):593–613

    Article  CAS  Google Scholar 

  • Nelson NO, Janke RR (2007) Phosphorus sources and management in organic production systems. HortTechnology 17:442–454

    CAS  Google Scholar 

  • Pilon-Smits EA, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  CAS  Google Scholar 

  • Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK, Akbar S, Palit P, Goswami A (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environ Sci Technol 47:13122–13131

    Article  CAS  Google Scholar 

  • Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13:705–713

    Article  CAS  Google Scholar 

  • Qiao D, Liu H, Yu L, Bao X, Simon GP, Petinakis E, Chen L (2016) Preparation and characterization of slow-release fertilizer encapsulated by starch-based super absorbent polymer. Carbohydr Polym 147:146–154

    Article  CAS  Google Scholar 

  • Rajonee AA, Zaman S, Huq SMI (2017) Preparation, characterization and evaluation of efficacy of phosphorus and potassium incorporated nano fertilizer. Adv Nanopart 6:62

    Article  Google Scholar 

  • Ratnikova TA, Podila R, Rao AM, Taylor AG (2015) Tomato seed coat permeability to selected carbon nanomaterials and enhancement of germination and seedling growth. Sci World J 2015:419215. https://doi.org/10.1155/2015/419215

    Article  CAS  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct Plant Biol 28:897–906

    Article  Google Scholar 

  • Rico CM, Johnson MG, Marcus MA, Andersen CP (2017) Intergenerational responses of wheat (Triticum aestivum L.) to cerium oxide nanoparticles exposure. Environ Sci Nano 4:700–711. https://doi.org/10.1039/C7EN00057J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rostami Ajirloo A, Shaaban M, Rahmati Motlagh Z (2015) Effect of K nano-fertilizer and N bio-fertilizer on yield and yield components of tomato (Lycopersicon esculentum L.). Int J Adv Biol Biomed Res 3:138–143

    Google Scholar 

  • Rothamsted Research (2006) Rothamsted research guide to the classical and other long-term experiments, datasets and sample archive. Premier Printers, Bury St. Edmunds

    Google Scholar 

  • Rui M, Ma C, Hao Y, Guo J, Rui Y, Tang X, Zhao Q, Fan X, Zhang Z, Hou T, Zhu S (2016) Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front Plant Sci 7:1–10

    Article  Google Scholar 

  • Saad AOM, El-Kholy MA (2000) Response of some faba bean to phosphorous and magnesium fertilization. Egypt J Agron 22:19–32

    CAS  Google Scholar 

  • Sabir A, Yazar K, Sabir F, Kara Z, Yazici MA, Goksu N (2014) Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci Hortic 175:1–8

    Article  CAS  Google Scholar 

  • Sainju UM, Lenssen A, Caesar-Tonthat T, Waddell J (2006) Tillage and crop rotation effects on dryland soil and residue carbon and nitrogen. Soil Sci Soc Am J 74:668–678

    Article  Google Scholar 

  • Sharonova NL, Yapparov AK, Khisamutdinov NS, Ezhkova AM, Yapparov IA, Ezhkov VO, Degtyareva IA, Babynin EV (2015) Nanostructured water–phosphorite suspension is a new promising fertilizer. Nanotechnol Russ 10(7–8):65–661. https://doi.org/10.1134/S1995078015040187

    Article  CAS  Google Scholar 

  • Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    Article  CAS  Google Scholar 

  • Singh AL, Jat RS, Chaudhari V, Bariya H, Sharma SJ (2010) Toxicities and tolerance of mineral elements boron, cobalt, molybdenum and nickel in crop plants. Plant Stress 4:31–56

    Google Scholar 

  • Singh A, Singh NB, Hussain I, Singh H, Yadav V, Singh SC (2016) Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J Biotechnol 233:84–94

    Article  CAS  Google Scholar 

  • Stark CH, Richards KG (2008) The continuing challenge of agricultural nitrogen loss to the environment in the context of global change and advancing research. Dyn Soil Dyn Plant 2:1–12

    Google Scholar 

  • Subbaiya R, Priyanka M, Selvam MM (2012) Formulation of green nano-fertilizer to enhance the plant growth through slow and sustained release of nitrogen. J Pharm Res 5:5178–5183

    CAS  Google Scholar 

  • Suresh S, Karthikeyan S, Jayamoorthy K (2016) Effect of bulk and nano-Fe2O3 particles on peanut plant leaves studied by Fourier transform infrared spectral studies. J Adv Res 7:739–747

    Article  CAS  Google Scholar 

  • Tarafdar J, Rathore I, Thomas E (2015) Enhancing nutrient use efficiency through nano technological interventions. Indian J Fertil 11:46–51

    Google Scholar 

  • Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, Patyka MV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Res Lett 9:289–297

    Article  Google Scholar 

  • Taran N, Batsmanova L, Kosyk O, Smirnov O, Kovalenko M, Honchar L, Okanenko A (2016) Colloidal nanomolybdenum influence upon the antioxidative reaction of chickpea plants (Cicer arietinum L.). Nanoscale Res Lett 11:476–480

    Article  Google Scholar 

  • Usten NH, Yokas AL, Saygili H (2006) Influence of potassium and calcium level on severity of tomato pith necrosis and yield of green house tomatoes. ISHS Acta Hortic 808:345–350

    Google Scholar 

  • Verma TS, Minhas RS (1987) Zinc and phosphorus interaction in a wheat–maize cropping system. Fert Res 13:77–86

    Article  CAS  Google Scholar 

  • Von Liebig J (1841) The organic chemistry in its application on agriculture and physiology. Velag Viehweg, Braunschweig 167 pp

    Book  Google Scholar 

  • Wang Y, Hu J, Dai Z, Li J, Huang J (2016) In vitro assessment of physiological changes of watermelon (Citrullus lanatus) upon iron oxide nanoparticles exposure. Plant Physiol Biochem 108:353–360

    Article  CAS  Google Scholar 

  • White JW, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets: iron, zinc, copper, calcium, magnesium, selenium, and iodine. New Phytol 182:49–84

    Article  CAS  Google Scholar 

  • Yoon SJ, Kwak JI, Lee WM, Holden PA (2014) Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Saf 100:131–137. https://doi.org/10.1016/j.ecoenv.2013.10.014

    Article  CAS  PubMed  Google Scholar 

  • Yugandhar P, Savithramma N (2013) Green synthesis of calcium carbonate nanoparticles and their effects on seed germination and seedling growth of Vigna mungo (L.) Hepper. Int J Adv Res 1:89–103

    CAS  Google Scholar 

  • Zhao L, Hu J, Huang Y, Wang H, Adeleye A, Ortiz C, Keller AA (2017) 1H NMR and GCeMS based metabolomics reveal nano-Cu altered cucumber (Cucumis sativus) fruit nutritional supply. Plant Physiol Biochem 110:138–146

    Article  CAS  Google Scholar 

  • Zhu G, Wang S, Wang Y, Wang C, Risgaard-Peterse N, Jetten MS, Yin C (2011) Anaerobic ammonia oxidation in a fertilized paddy soil. ISME J 5:1905

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Edgar Vázquez Núñez acknowledges financial support received through project ID PRODEP UGTO-PTC- 571 and thanks BV Furlong for her assistance. Guadalupe de la Rosa Álvarez acknowledges support received from Universidad de Guanajuato (DAIP-UG 1,014/2016, ETAPA 2; Dirección de Apoyo a la Investigación y al Posgrado; Rectoría Campus León). Martha López-Moreno and Fabián Fernández-Luqueño received no specific financial support for this work.

Competing interests The authors declare that they have not competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar Vázquez-Núñez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vázquez-Núñez, E., López-Moreno, M.L., de la Rosa Álvarez, G., Fernández-Luqueño, F. (2018). Incorporation of Nanoparticles into Plant Nutrients: The Real Benefits. In: López-Valdez, F., Fernández-Luqueño, F. (eds) Agricultural Nanobiotechnology. Springer, Cham. https://doi.org/10.1007/978-3-319-96719-6_4

Download citation

Publish with us

Policies and ethics