Skip to main content

Integration of Heterogeneous Classical Data Sources in an Ontological Database

  • Conference paper
  • First Online:
Big Data, Cloud and Applications (BDCA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 872))

Included in the following conference series:

Abstract

The development of semantic web technologies and the expansion of the amount of data managed within companies databases has significantly expanded the gap between information systems and amplified the changes in many technologies. However, this growth of information will give rise to real obstacles if we cannot maintain the pace with these changes and meet the needs of users. To succeed, researchers must administrate properly these sources of knowledge and support the interoperability of heterogeneous information systems. In this perspective, it is necessary to find a solution for integrating data from traditional information systems into richer systems based on ontologies. In this paper, we provide and develop a semi-automatic integration approach in which ontology has a central role. Our approach is to convert the different classical data sources (UML, XML, RDB) to local ontologies (OWL2), then merge these ontologies into a global ontological model based on syntactic, structural and semantic similarity measurement techniques to identify similar concepts and avoid their redundancy in the merge result. Our study is proven by a developed prototype that demonstrates the efficiency and power of our strategy and validates the theoretical concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45810-7_24

    Chapter  MATH  Google Scholar 

  2. Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for word sense identification. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)

    Google Scholar 

  3. Lin, D.: An information-theoretic definition of similarity. In: Proceedings of the Fifteenth International Conference on Machine Learning (ICML 1998). Morgan Kaufmann, Madison (1998)

    Google Scholar 

  4. Breitling, F.: A standard transformation from XML to RDF via XSLT. Astron. Nachr. 330(7), 755–760 (2009)

    Article  Google Scholar 

  5. Li, G., Luo, Z., Shao, J.: Multi-mapping based ontology merging system design. In: 2nd International Conference on Advanced Computer Control (ICACC), June 2010

    Google Scholar 

  6. Stumne, G., Maedche, A.: FCA-MERGE: bottom-up merging of ontologies. In: The 17th International Joint Conference on Artificial Intelligence, vol. 1, pp. 225–230, August 2001

    Google Scholar 

  7. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE Comput. 25(3), 38–49 (1992)

    Article  Google Scholar 

  8. Ling, H., Zhou, S.: Mapping relational databases into OWL ontology. Int. J. Eng. Technol. 5(6), 4735–4740 (2013)

    Google Scholar 

  9. Bedini, I., Matheus, C., Patel-Schneider, P.F.: Transforming XML schema to OWL using patterns. In: 2011 Fifth IEEE International Conference on Semantic Computing (ICSC), October 2011

    Google Scholar 

  10. Bedini, I., Benjamin, N., Gardarin, G.: Janus: Automatic Ontology Builder from XSD files. arXiv preprint arXiv:1001.4892 (2010)

  11. Sequeda, J.F., Arenas, M., Miranker, D.P.: On directly mapping relational databases to RDF and OWL. In: International World Wide Web Conference Committee (IW3C2), WWW 2012, 16–20 April 2012, Lyon, France (2012)

    Google Scholar 

  12. Jiang, J., Conrath, D.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Proceedings of International Conference on Research in Computational Linguistics, Taiwan (1997)

    Google Scholar 

  13. Huang, J.Y., Lange, C., Auer, S.: Streaming transformation of XML to RDF using XPath based mappings. In: Proceedings of the 11th International Conference on Semantic Systems, SEMANTICS 2015, 15–17 September, Vienna, Austria (2015)

    Google Scholar 

  14. Zedlitz, J., Jörke, J., Luttenberger, N.: From UML to OWL 2. In: Lukose, D., Ahmad, A.R., Suliman, A. (eds.) KTW 2011. CCIS, vol. 295, pp. 154–163. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32826-8_16

    Chapter  Google Scholar 

  15. Alaoui, L., EL Hajjamy, O., Bahaj, M.: Automatic mapping of relational databases to OWL ontology. Int. J. Eng. Res. Technol. (IJERT), 3(4) (2014)

    Google Scholar 

  16. Alaoui, L., El Hajjamy, O., Bahaj, M.: RDB2OWL2: schema and data conversion from RDB into OWL2, Int. J. Eng. Res. Technol. (IJERT), 3(11) (2014)

    Google Scholar 

  17. Ferdinand, M., Zirpins, C., Trastour, D.: Lifting XML schema to OWL. In: Koch, N., Fraternali, P., Wirsing, M. (eds.) ICWE 2004. LNCS, vol. 3140, pp. 354–358. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27834-4_44

    Chapter  Google Scholar 

  18. Klein, M., Fensel, D.: Ontology versioning on the semantic web. In: The First Semantic Web Working Symposium, Stanford, CA (2001)

    Google Scholar 

  19. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor. Comput. Sci. 109(1–2), 181–224 (1993)

    Article  Google Scholar 

  20. Mahfoudh, M., Forestier, G., Hassenforder, M.: A benchmark for ontologies merging assessment. In: Lehner, F., Fteimi, N. (eds.) KSEM 2016. LNCS (LNAI), vol. 9983, pp. 555–566. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47650-6_44

    Chapter  Google Scholar 

  21. Noy, N.F., Muzen, N.A.: PROMPT: algorithm and tool for automated ontology merging and alignement. Stanford University (2000)

    Google Scholar 

  22. Gherabi, N., Bahaj, M.: A new method for mapping UML class into OWL ontology. Spec. Issue Int. J. Comput. Appl. (0975 – 8887) Softw. Eng. Databases Expert Syst. – SEDEXS, (2012)

    Google Scholar 

  23. EL Hajjamy, O., Alaoui, L., Bahaj, M.: Mapping UML to OWL2 Ontology. J. Theor. Appl. Inf. Technol. (JATIT), 90(1) (2016)

    Google Scholar 

  24. EL Hajjamy, O., Alaoui, L., Bahaj, M.: XSD2OWL2: automatic mapping from XML schema into OWL2 ontology. J. Theor. Appl. Inf. Technol. (JATIT), 95(8) (2017)

    Google Scholar 

  25. Resnik, P.: Using information content to evaluate semantic similarity in taxonomy. In: Proceedings of 14th International Joint Conference on Artificial Intelligence, Montreal (1995)

    Google Scholar 

  26. Rada, R., Mili, H., Bichnell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19, 17–30 (1989)

    Article  Google Scholar 

  27. Amrouch, S., Mostefai, S.: Un algorithme semi-automatique pour la fusion d’ontologies basé sur la combinaison de stratégies. In: International Conference on Education and e-Learning Innovations (2012)

    Google Scholar 

  28. Cranefield, S.: UML and the semantic web. In: The First Semantic Web Working Symposium, pp. 113–130. Stanford University, California (2001)

    Google Scholar 

  29. Raunich, S., Rahm, E.: ATOM: automatic target-driven ontology merging. In: 2011 IEEE 27th International Conference on Data Engineering (ICDE), May 2011

    Google Scholar 

  30. Slimani, T., Yaghlane, B.B., Mellouli, K.: Une extension de mesure de similarité entre les concepts d’une ontologie. In: 4th International Conference: Sciences of Electronic, Technologies of Information and Telecommunications, March 2007

    Google Scholar 

  31. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions and reversals. Sov. Phys. Dokl. 6, 707–710 (1966)

    MathSciNet  Google Scholar 

  32. Winkler, W.E.: Overview of record linkage and current research directions. In: Research Report Series, RRS (2006)

    Google Scholar 

  33. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: Proceedings of the 32nd Annual Meeting of the Associations for Computational Linguistics, pp. 133–138 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oussama El Hajjamy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Hajjamy, O., Alaoui, L., Bahaj, M. (2018). Integration of Heterogeneous Classical Data Sources in an Ontological Database. In: Tabii, Y., Lazaar, M., Al Achhab, M., Enneya, N. (eds) Big Data, Cloud and Applications. BDCA 2018. Communications in Computer and Information Science, vol 872. Springer, Cham. https://doi.org/10.1007/978-3-319-96292-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96292-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96291-7

  • Online ISBN: 978-3-319-96292-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics