Skip to main content

A Systematic Way to Life Detection: Combining Field, Lab and Space Research in Low Earth Orbit

  • Chapter
  • First Online:
Biosignatures for Astrobiology

Abstract

The characterization and detection of biosignatures is a challenging task, but one that needs to be solved before instruments are used for life detection missions on other planets and moons. A complex logistical effort is needed to support such exploration missions and a significant amount of preparation and investigation is required to prevent and eliminate pitfalls and errors, which may occur during the technical and scientific operations. Herein is suggested a systematic approach to prepare for “life-detection” missions, and an overview is given on the necessary steps in order to search for life in-situ on another planet or moon. Results obtained from research performed in the field, in the lab and in space will help to enhance our knowledge regarding the traces and signatures of life, and how to recognize life itself.

Life Detection Group of BIOMEX/BIOSIGN: Mickaël Baqué, Daniela Billi, Ute Böttger, Charles S. Cockell, Rosa de la Torre, Bernard H Foing, Franziska Hanke, Stefan Leuko, Jesús Martinez-Frías, Ralf Moeller, Karen Olsson-Francis, Silvano Onofri, Petra Rettberg, Susanne Schröder, Dirk Schulze-Makuch, Laura Selbmann, Dirk Wagner, Laura Zucconi

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Banfield JF, Moreau JW, Chan CS et al (2001) Mineralogical biosignatures and the search for life on Mars. Astrobiology 1:447–465

    Article  ADS  Google Scholar 

  • Baqué M, Verseux C, Böttger U et al (2016) Preservation of biomarkers from cyanobacteria mixed with Mars-like regolith under simulated Martian atmosphere and UV flux. Orig Life Evol Biosph 46:289–310

    Article  ADS  Google Scholar 

  • Bibring J-P, Langevin Y, Gendrin A et al (2005) Mars surface diversity as revealed by the OMEGA/Mars express observations. Science 307:1576–1581

    Article  ADS  Google Scholar 

  • Bibring J-P, Squyres SW, Arvidson RE (2006) Merging views on Mars. Science 313:1899–1901

    Article  Google Scholar 

  • Böttger U, de Vera J-P, Fritz J et al (2012) Optimizing the detection of carotene in cyanobacteria in a Martian regolith analogue with a Raman spectrometer for the ExoMars mission. Planet Space Sci 60:356–362

    Article  ADS  Google Scholar 

  • Böttger U, de la Torre R, Frias J-M et al (2013a) Raman spectroscopic analysis of the oxalate producing extremophile Circinaria Gyrosa. Int J Astrobiol 13:19–27

    Article  Google Scholar 

  • Böttger U, de Vera J-P, Hermelink A et al (2013b) Application of Raman spectroscopy, as in situ technology for the search for life. In: de Vera JP, Seckbach J (eds) Cellular origins, life in extreme habitats and astrobiology 28: habitability of other planets and satellites. Springer, Berlin, pp 333–345

    Google Scholar 

  • Cady SL, Farmer JD, Grotzinger JP et al (2003) Morphological biosignatures and the search for life on Mars. Astrobiology 3:351–368

    Article  ADS  Google Scholar 

  • Chevrier V, Mathé PE (2007) Mineralogy and evolution of the surface of Mars: a review. Planet Space Sci 55:289–314

    Article  ADS  Google Scholar 

  • Cockell CS, Brack A, Wynn-Williams DD et al (2007) Interplanetary transfer of photosynthesis: an experimental demonstration of a selective dispersal filter in planetary island biogeography. Astrobiology 7:1–9

    Article  ADS  Google Scholar 

  • Cockell CS, Bush T, Bryce C et al (2016) Habitability: a review. Astrobiology 16:89–117

    Article  ADS  Google Scholar 

  • Dartnell LR, Patel MR (2014) Degradation of microbial fluorescence biosignatures by solar ultraviolet radiation on Mars. Int J Astrobiol 13:112–123

    Article  Google Scholar 

  • Dartnell LR, Page K, Jorge-Villar SE et al (2012) Destruction of Raman biosignatures by ionising radiation and the implications for life detection on Mars. Anal Bioanal Chem 403:131–144

    Article  Google Scholar 

  • de la Torre R, Sancho L, Horneck G et al (2010) Survival of lichens and bacteria exposed to outer space conditions-results of the Lithopanspermia experiments. Icarus 208:735–748

    Article  ADS  Google Scholar 

  • de Vera J-P, Böttger U, de la Torre R et al (2012) Supporting Mars exploration: BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology. Planet Space Sci 74:103–110

    Article  ADS  Google Scholar 

  • Demets R, Schulte W, Baglioni P (2005) The past, present and future Biopan. Adv Space Res 36:311–316

    Article  ADS  Google Scholar 

  • Direito SOL, Ehrenfreund P, Marees A et al (2011) A wide variety of putative extremophiles and large beta-diversity at the Mars Desert Research Station (Utah). Int J Astrobiol 10:191–207

    Article  Google Scholar 

  • Dong Y, Hill TW, Teolis BD et al (2011) The water vapor plumes of Enceladus. J Geophys Res 116:A10204

    ADS  Google Scholar 

  • Ehrenfreund P, Röling WFM, Thiel C et al (2011) Astrobiolgy and habitability studies in preparation for future Mars missions: trends from investigating minerals, organics and biota. Int J Astrobiol 10:239–253

    Article  Google Scholar 

  • Fischer E, Martínez GM, Renno NO (2016) Formation and persistence of brine on Mars: experimental simulations throughout the diurnal cycle at the phoenix landing site. Astrobiology 16:937–948

    Article  ADS  Google Scholar 

  • Foing BH, Stoker C, Zavaleta J et al (2011) Field astrobiology research in Moon-Mars analogue environments: instruments and methods. Int J Astrobiol 10:141–160

    Article  Google Scholar 

  • Foucher F, Westall F, Brandstätter F et al (2010) Testing the survival of microfossils in artificial martian sedimentary meteorites during entry into Earth’s atmosphere: the STONE 6 experiment. Icarus 207:616–630

    Article  ADS  Google Scholar 

  • Gleeson DF, Pappalardo RT, Anderson MS et al (2012) Biosignature detection at an Arctic analog to Europa. Astrobiology 12:135–150

    Article  ADS  Google Scholar 

  • Hand KP, Carlson RW, Chyba CF (2007) Energy, chemical disequilibrium, and geological constraints on Europa. Astrobiology 7:1006–1022

    Article  ADS  Google Scholar 

  • Head JW, Wilson L, Mitchell KL (2003) Generation of recent massive water floods at Cerberus Fossae, Mars by dike emplacement, cryospheric cracking, and confined aquifer groundwater release. Geophys Res Lett 30:1577

    Article  ADS  Google Scholar 

  • Hsu H-W, Postberg F, Sekine Y et al (2015) Ongoing hydrothermal activities within Enceladus. Nature 519:207–210

    Article  ADS  Google Scholar 

  • Iess L, Stevenson DJ, Parisi M et al (2014) The gravity field and interior structure of enceladus. Science 344:78–80

    Article  ADS  Google Scholar 

  • Kawaguchi Y, Yokobori S, Hashimoto H et al (2016) Investigation of the interplanetary transfer of microbes in the tanpopo mission at the exposed facility of the international space station. Astrobiology 16:363–376

    Article  ADS  Google Scholar 

  • Martins Z, Sephton MA, Foing BH et al (2011) Extraction of amino acids from soils close to the Mars Desert Research Station (MDRS), Utah. Int J Astrobiol 10:231–238

    Article  Google Scholar 

  • McKay CP, Anbar AD, Porco C et al (2014) Follow the plume: the habitability of enceladus. Astrobiology 14:352–355

    Article  ADS  Google Scholar 

  • McMahon S, O’Malley-James J, Parnell J (2013) Circumstellar habitable zones for deep terrestrial biospheres. Planet Space Sci 85:312–318

    Article  ADS  Google Scholar 

  • Onofri S, de la Torre R, de Vera J-P et al (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516

    Article  ADS  Google Scholar 

  • Onofri S, de Vera J-P, Zucconi L et al (2015) Survival of Antarctic cryptoendolithic fungi in simulated martian conditions on board the International Space Station. Astrobiology 15:1052–1059

    Article  ADS  Google Scholar 

  • Orzechowska GE, Kidd RD, Foing BH et al (2011) Analysis of Mars analogue soil samples using solid-phase microextraction, organic solvent extraction and gas chromatography/mass spectrometry. Int J Astrobiol 10:209–219

    Article  Google Scholar 

  • Pacelli C, Selbmann L, Zucconi L et al (2016) BIOMEX experiment: ultrastructural alterations, molecular damage and survival of the fungus Cryomyces antarcticus after the experiment verification tests. Orig Life Evol Biosph 47:187–202

    Article  ADS  Google Scholar 

  • Pacelli C, Selbmann L, Zucconi L et al (2017) Survival, DNA integrity, and ultrastructural damage in Antarctic cryptoendolithic eukaryotic microorganisms exposed to ionizing radiation. Astrobiology 17:126–135

    Article  ADS  Google Scholar 

  • Postberg F, Schmidt J, Hillier J et al (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474:620–622

    Article  ADS  Google Scholar 

  • Poulet F, Bibring JP, Mustard JF et al (2005) Phyllosilicates on Mars and implications for early Martian climate. Nature 438:623–627

    Article  ADS  Google Scholar 

  • Rabbow E, Rettberg P, Barczyk S et al (2012) EXPOSE-E: an ESA astrobiology mission 1.5 years in space. Astrobiology 12:374–386

    Article  ADS  Google Scholar 

  • Rabbow E, Rettberg P, Barczyk S et al (2015) The astrobiological mission EXPOSE-R on board of the International Space Station. Int J Astrobiol 14:3–16

    Article  Google Scholar 

  • Raggio J, Pintado A, Ascaso C et al (2011) Whole lichen Thalli survive exposure to space conditions: results of lithopanspermia experiment with Aspicilia fruticulosa. Astrobiology 11:281–292

    Article  ADS  Google Scholar 

  • Rauer H, Gebauer S, Pv P et al (2011) Potential biosignatures in super-Earth atmospheres – I Spectral appearance of super-Earths around M dwarfs. Astron Astrophys 529:A8

    Article  Google Scholar 

  • Roth L, Saur J, Retherford KD et al (2014) Transient water vapor at Europa’s south pole. Science 343:171–174

    Article  ADS  Google Scholar 

  • Schirmack J, Alawi M, Wagner D (2015) Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation. Front Microbiol 6:210

    Article  Google Scholar 

  • Serrano P, Hermelink A, Böttger U et al (2014) Biosignature detection of methanogenic archaea from Siberian permafrost using confocal Raman spectroscopy. Planet Space Sci 98:191–197

    Article  ADS  Google Scholar 

  • Serrano P, Hermelink A, Lasch P et al (2015) Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil. FEMS Microbiol Ecol 91:fiv126

    Article  Google Scholar 

  • Waite JH Jr, Lewis WS, Magee BA et al (2009) Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature 460:487–490

    Article  ADS  Google Scholar 

  • Westall F, Foucher F, Bost N et al (2015) Biosignatures on Mars: what, where, and how? Implications for the search for Martian life. Astrobiology 15:998–1029

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Jean-Pierre de Vera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Vera, JP., The Life Detection Group of BIOMEX/BIOSIGN. (2019). A Systematic Way to Life Detection: Combining Field, Lab and Space Research in Low Earth Orbit. In: Cavalazzi, B., Westall, F. (eds) Biosignatures for Astrobiology. Advances in Astrobiology and Biogeophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-96175-0_5

Download citation

Publish with us

Policies and ethics