Skip to main content

Anatomy and Physiology of the Esophagus and Lower Esophageal Sphincter

  • Chapter
  • First Online:
The SAGES Manual of Foregut Surgery
  • 1746 Accesses

Abstract

As surgeons address foregut disease in their patients with different procedures, a review of relevant anatomy and physiology of the esophagus and LES will complement discussion with their patients and decision-making. As will be apparent in this chapter, the esophagus is more than a conduit that directs liquids and food to other organs, deters reflux, and serves as a passageway for radiographic contrast or endoscopes to define more distant foregut disease/disorders. Instead, the esophagus is a very complex organ whose function is directed by CNS and intrinsic esophageal control that is implemented by skeletal and smooth muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liebermann-Meffert DM, Luescher U, Neff U, Ruedi TP, Allgower M. Esophagectomy without thoracotomy: is there a risk of intramediastinal bleeding? A study on blood supply of the esophagus. Ann Surg. 1987;206(2):184–92.

    Article  CAS  Google Scholar 

  2. Gates GA. Upper esophageal sphincter: pre and post-laryngectomy--a normative study. Laryngoscope. 1980;90(3):454–64.

    Article  CAS  Google Scholar 

  3. Pitman R, Fraser G. The post-cricoid impression on the oesophagus. Clin Radiol. 1965;16(1):34–9.

    Article  CAS  Google Scholar 

  4. Chiu M-J, Chang Y-C, Hsiao T-Y. Prolonged effect of botulinum toxin injection in the treatment of cricopharyngeal dysphagia: case report and literature review. Dysphagia. 2004;19(1):52–7.

    Article  Google Scholar 

  5. Cook IJ, Dodds WJ, Dantas RO, Massey B, Kern MK, Lang IM, Brasseur JG, Hogan WJ. Opening mechanisms of the human upper esophageal sphincter. Am J Phys. 1989;257(5 Pt 1):G748–59.

    CAS  Google Scholar 

  6. Boyce HW. The normal anatomy around the oesophagogastric junction: an endoscopic view. Best Pract Res Clin Gastroenterol. 2008;22(4):553–67. https://doi.org/10.1016/j.bpg.2008.02.003.

    Article  PubMed  Google Scholar 

  7. Tang SJ, Wu R. Esophageal introitus (with videos). Gastrointest Endosc. 2015;81(2):270–81. https://doi.org/10.1016/j.gie.2014.09.065.

    Article  PubMed  Google Scholar 

  8. Roman S, Kahrilas PJ, Kia L, Luger D, Soper N, Pandolfino JE. Effects of large hiatal hernias on esophageal peristalsis. Arch Surg. 2012;147(4):352–7. https://doi.org/10.1001/archsurg.2012.17.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Staiano A, Clouse RE. Value of subject height in predicting lower esophageal sphincter location. Am J Dis Child. 1991;145(12):1424–7.

    CAS  PubMed  Google Scholar 

  10. Liebermann-Meffert D. The Pharyngoesophageal segment: anatomy and innervation. Dis Esophagus. 1995;8:242–51.

    Google Scholar 

  11. Nilsson ME, Isacsson G, Isberg A, Schiratzki H. Mobility of the upper esophageal sphincter in relation to the cervical spine: a morphologic study. Dysphagia. 1989;3(3):161–5. https://doi.org/10.1007/bf02407135.

    Article  CAS  PubMed  Google Scholar 

  12. Curtis DJ. Radiographic anatomy of the pharynx. Dysphagia. 1986;1(2):51–62.

    Article  Google Scholar 

  13. Liebermann-Meffert D. Clinically oriented anatomy, embryology, and histology. In: Pearson FG, Patterson GA, editors. Pearson’s thoracic and esophageal surgery. London: Churchill Livingstone; 2008.

    Google Scholar 

  14. Kumoi K, Ohtsuki N, Teramoto Y. Pharyngo-esophageal diverticulum arising from Laimer’s triangle. Eur Arch Otorhinolaryngol. 2001;258(4):184–7.

    Article  CAS  Google Scholar 

  15. Rubesin SE, Levine MS. Killian-Jamieson diverticula: radiographic findings in 16 patients. AJR Am J Roentgenol. 2001;177(1):85–9. https://doi.org/10.2214/ajr.177.1.1770085.

    Article  CAS  PubMed  Google Scholar 

  16. Cook IJ, Gabb M, Panagopoulos V, Jamieson GG, Dodds WJ, Dent J, Shearman DJ. Pharyngeal (Zenker’s) diverticulum is a disorder of upper esophageal sphincter opening. Gastroenterology. 1992;103(4):1229–35.

    Article  CAS  Google Scholar 

  17. McConnel FM, Hood D, Jackson K, O’Connor A. Analysis of intrabolus forces in patients with Zenker’s diverticulum. Laryngoscope. 1994;104(5 Pt 1):571–81.

    Article  CAS  Google Scholar 

  18. Cook IJ, Blumbergs P, Cash K, Jamieson GG, Shearman DJ. Structural abnormalities of the cricopharyngeus muscle in patients with pharyngeal (Zenker’s) diverticulum. J Gastroenterol Hepatol. 1992;7(6):556–62.

    Article  CAS  Google Scholar 

  19. Achkar E. Zenker’s diverticulum. Digest Dise (Basel, Switzerland). 1998;16(3):144–51.

    Article  CAS  Google Scholar 

  20. Undavia S, Anand SM, Jacobson AS. Killian-Jamieson diverticulum: a case for open transcervical excision. Laryngoscope. 2013;123(2):414–7. https://doi.org/10.1002/lary.23639.

    Article  PubMed  Google Scholar 

  21. Siow SL, Mahendran HA, Hardin M. Transcervical diverticulectomy for Killian-Jamieson diverticulum. Asian J Surg. 2015;40:324. https://doi.org/10.1016/j.asjsur.2015.01.007.

    Article  PubMed  Google Scholar 

  22. Orzell SFT, Grillone G. Killian-Jamieson diverticulum: a case report and argument for Transcervical Diverticulectomy. J Otolaryngol Rhinol. 2016;2(4):1–4.

    Article  Google Scholar 

  23. Coughlan CA, Verma SP. The utility of recurrent laryngeal nerve monitoring during open pharyngeal diverticula procedures. Ann Otol Rhinol Laryngol. 2016;125(8):648–51. https://doi.org/10.1177/0003489416642815.

    Article  PubMed  Google Scholar 

  24. Welch RW, Luckmann K, Ricks PM, Drake ST, Gates GA. Manometry of the normal upper esophageal sphincter and its alterations in laryngectomy. J Clin Invest. 1979;63(5):1036–41. https://doi.org/10.1172/JCI109372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Standring S. Larynx. In: Standring S, editor. Gray’s anatomy: the anatomical basis of clinical practice. Philadelphia, PA: Elsevier Health Sciences; 2015. p. 586–604.

    Google Scholar 

  26. Sivarao DV, Goyal RK. Functional anatomy and physiology of the upper esophageal sphincter. Am J Med. 2000;108(Suppl 4a):27s–37s.

    Article  Google Scholar 

  27. Drake R, Vogl AW, Mitchell AW. Head and neck. In: Drake R, Vogl AW, Mitchell AW, editors. Gray’s anatomy for students. Philadelphia, PA: Elsevier Health Sciences; 2009. p. 1–455.

    Google Scholar 

  28. Goyal RK, Martin SB, Shapiro J, Spechler SJ. The role of cricopharyngeus muscle in pharyngoesophageal disorders. Dysphagia. 1993;8(3):252–8.

    Article  CAS  Google Scholar 

  29. Pera M, Yamada A, Hiebert CA, Duranceau A. Sleeve recording of upper esophageal sphincter resting pressures during cricopharyngeal myotomy. Ann Surg. 1997;225(2):229–34.

    Article  CAS  Google Scholar 

  30. Liebermann-Meffert D, Duranceau A. Embryology, anatomy and physiology of the esophagus. In: Shackelford’s surgery of the alimentary tract, vol. 1. Philadelphia, PA: Elsevier; 1991. p. 3–49.

    Google Scholar 

  31. Boyce H, Boyce G. Esophagus. In: Tadataka Y, David H, Alpers H, editors. Textbook of gastroenterology. Phidelphia: Lippencott; 2003. p. 1148–65.

    Google Scholar 

  32. Wolf BS. Heartburn: the role of radiology. JAMA. 1976;235(12):1244–7. https://doi.org/10.1001/jama.1976.03260380038023.

    Article  CAS  PubMed  Google Scholar 

  33. Liebermann-Meffert D. Anatomical basis for the approach and extent of surgical treatment of esophageal cancer. Dis Esophagus. 2001;14(2):81–4.

    Article  CAS  Google Scholar 

  34. Feulner J, Zhou SK, Cavallaro A, Seifert S, Hornegger J, Comaniciu D. Fast automatic segmentation of the esophagus from 3d ct data using a probabilistic model. In: International conference on medical image computing and computer-assisted intervention. New York, NY: Springer; 2009. p. 255–62.

    Google Scholar 

  35. Feulner J, Zhou SK, Hammon M, Seifert S, Huber M, Comaniciu D, Hornegger J, Cavallaro A. A probabilistic model for automatic segmentation of the esophagus in 3-D CT scans. IEEE Trans Med Imaging. 2011;30(6):1252–64. https://doi.org/10.1109/TMI.2011.2112372.

    Article  PubMed  Google Scholar 

  36. Thompson WM, Halvorsen RA, Foster W Jr, Roberts L, Korobkin M. Computed tomography of the gastroesophageal junction: value of the left lateral decubitus view. J Comput Assist Tomogr. 1984;8(2):346–9.

    CAS  PubMed  Google Scholar 

  37. Scazzuso FA, Rivera SH, Albina G, de la Paz Ricapito M, Gomez LA, Sanmartino V, Kamlofsky M, Laino R, Giniger A. Three-dimensional esophagus reconstruction and monitoring during ablation of atrial fibrillation: combination of two imaging techniques. Int J Cardiol. 2013;168(3):2364–8. https://doi.org/10.1016/j.ijcard.2013.01.026.

  38. Lemola K, Sneider M, Desjardins B, Case I, Han J, Good E, Tamirisa K, Tsemo A, Chugh A, Bogun F. Computed tomographic analysis of the anatomy of the left atrium and the esophagus. Circulation. 2004;110(24):3655–60.

    Article  Google Scholar 

  39. Kikendall JW, Friedman AC, Oyewole MA, Fleischer D, Johnson LF. Pill-induced esophageal injury. Case reports and review of the medical literature. Dig Dis Sci. 1983;28(2):174–82.

    Article  CAS  Google Scholar 

  40. Standring S. Neck. In: Gray’s anatomy: the anatomical basis of clinical practice. 39th ed. Philadelphia, PA: Elsevier Health Sciences; 2015. p. 49.

    Google Scholar 

  41. Frank H Netter M. Netter basic science : atlas of human anatomy : with student consult online access. 6th ed. Philadelphia, PA: Saunders Elsevier; 2014.

    Google Scholar 

  42. Guidera AK, Dawes PJ, Stringer MD. Cervical fascia: a terminological pain in the neck. ANZ J Surg. 2012;82(11):786–91. https://doi.org/10.1111/j.1445-2197.2012.06231.x.

    Article  PubMed  Google Scholar 

  43. Guidera AK, Dawes PJ, Fong A, Stringer MD. Head and neck fascia and compartments: no space for spaces. Head Neck. 2014;36(7):1058–68. https://doi.org/10.1002/hed.23442.

    Article  PubMed  Google Scholar 

  44. Som PM, Curtin HD. Fascia and spaces of the neck. In: Som PM, Curtin HD, editors. Head and neck imaging. 5th ed. St Louis, MO: Mosby; 2011. p. 2203–34. https://doi.org/10.1016/b978-0-323-05355-6.00036-7.

    Chapter  Google Scholar 

  45. Ozlugedik S, Ibrahim Acar H, Apaydin N, Firat Esmer A, Tekdemir I, Elhan A, Ozcan M. Retropharyngeal space and lymph nodes: an anatomical guide for surgical dissection. Acta Otolaryngol. 2005;125(10):1111–5. https://doi.org/10.1080/00016480510035421.

    Article  PubMed  Google Scholar 

  46. Scali F, Nash LG, Pontell ME. Defining the morphology and distribution of the alar fascia: a sheet plastination investigation. Ann Otol Rhinol Laryngol. 2015;124(10):814–9. https://doi.org/10.1177/0003489415588129.

    Article  PubMed  Google Scholar 

  47. Skandalakis JE, Ellis H. Embryologic and anatomic basis of esophageal surgery. Surg Clin North Am. 2000;80(1):85–155. x

    Article  CAS  Google Scholar 

  48. Miller MSaG The Esophagus, Hand book and Atlas of Endoscopy (trans: Duncan Colin-Jones M). Grassmann AG, Solothurn, Switzerland.

    Google Scholar 

  49. Witcombe B, Meyer D. Sword swallowing and its side effects. BMJ. 2006;333(7582):1285–7. https://doi.org/10.1136/bmj.39027.676690.55.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Martin M, Steele S, Mullenix P, Long W, Izenberg S. Management of esophageal perforation in a sword swallower: a case report and review of the literature. J Trauma. 2005;59(1):233–5.

    Article  Google Scholar 

  51. Smoker W, Harnsberger H. Differential diagnosis of head and neck lesions based on their space of origin. 2. The infrahyoid portion of the neck. AJR Am J Roentgenol. 1991;157(1):155–9.

    Article  CAS  Google Scholar 

  52. Pouderoux P, Lin S, Kahrilas PJ. Timing, propagation, coordination, and effect of esophageal shortening during peristalsis. Gastroenterology. 1997;112(4):1147–54.

    Article  CAS  Google Scholar 

  53. Edmundowicz SA, Clouse RE. Shortening of the esophagus in response to swallowing. Am J Phys. 1991;260(3 Pt 1):G512–6.

    CAS  Google Scholar 

  54. Liebermann-Meffert DM, Walbrun B, Hiebert CA, Siewert JR. Recurrent and superior laryngeal nerves: a new look with implications for the esophageal surgeon. Ann Thorac Surg. 1999;67(1):217–23.

    Article  CAS  Google Scholar 

  55. Orringer MB, Orringer JS. Esophagectomy without thoracotomy: a dangerous operation? J Thorac Cardiovasc Surg. 1983;85(1):72–80.

    CAS  PubMed  Google Scholar 

  56. Gregersen H, Liao D, Fung YC. Determination of homeostatic elastic moduli in two layers of the esophagus. J Biomech Eng. 2008;130(1):011005. https://doi.org/10.1115/1.2838031.

    Article  PubMed  Google Scholar 

  57. Burt AV. Pneumatic rupture of the intestinal canal: with experimental data showing the mechanism of perforation and the pressure required. Arch Surg. 1931;22(6):875–902.

    Article  Google Scholar 

  58. Liebermann-Meffert D, Geissdörfer K. Is the transition of striated into smooth muscle precisely known. In: Giuli RM, Skinner DB, editors. Primary motility disorders of the esophagus: 450 Questions-450 Answers. Paris, Londres, RomeParis: Libbey Eurotext; 1991. p. 108–12.

    Google Scholar 

  59. Meyer G, Austin R, Brady C III, Castell D. Muscle anatomy of the human esophagus. J Clin Gastroenterol. 1986;8(2):131–4.

    Article  CAS  Google Scholar 

  60. Mashimo HMD, Goyal RK. Physiology of esophageal motility. 2006;2017. www.GIMotilityonline.com.

  61. Goyal RK, Chaudhury A. Physiology of normal esophageal motility. J Clin Gastroenterol. 2008;42(5):610–9. https://doi.org/10.1097/MCG.0b013e31816b444d.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dodds WJ. 1976 Walter B. Cannon lecture: current concepts of esophageal motor function: clinical implications for radiology. AJR Am J Roentgenol. 1977;128(4):549–61. https://doi.org/10.2214/ajr.128.4.549.

    Article  CAS  PubMed  Google Scholar 

  63. Karamanolis G, Stevens W, Vos R, Tack J, Clave P, Sifrim D. Oesophageal tone and sensation in the transition zone between proximal striated and distal smooth muscle oesophagus. Neurogastroenterol Motil. 2008;20(4):291–7. https://doi.org/10.1111/j.1365-2982.2007.01028.x.

    Article  CAS  PubMed  Google Scholar 

  64. Ghosh SK, Pandolfino JE, Zhang Q, Jarosz A, Shah N, Kahrilas PJ. Quantifying esophageal peristalsis with high-resolution manometry: a study of 75 asymptomatic volunteers. Am J Physiol Gastrointest Liver Physiol. 2006;290(5):G988. https://doi.org/10.1152/ajpgi.00510.2005.

    Article  CAS  PubMed  Google Scholar 

  65. Weijenborg PW, Kessing BF, Smout AJ, Bredenoord AJ. Normal values for solid-state esophageal high-resolution manometry in a European population; an overview of all current metrics. Neurogastroenterol Motil. 2014;26(5):654–9. https://doi.org/10.1111/nmo.12314.

    Article  CAS  PubMed  Google Scholar 

  66. Massey BT, Dodds WJ, Hogan WJ, Brasseur JG, Helm JF. Abnormal esophageal motility. An analysis of concurrent radiographic and manometric findings. Gastroenterology. 1991;101(2):344–54.

    Article  CAS  Google Scholar 

  67. Li M, Brasseur JG, Dodds WJ. Analyses of normal and abnormal esophageal transport using computer simulations. Am J Phys. 1994;266(4 Pt 1):G525–43.

    CAS  Google Scholar 

  68. Kahrilas P, Dodds W, Hogan W. Effect of peristaltic dysfunction on esophageal volume clearance. Gastroenterology. 1988;94(1):73–80.

    Article  CAS  Google Scholar 

  69. Ghosh SK, Janiak P, Schwizer W, Hebbard GS, Brasseur JG. Physiology of the esophageal pressure transition zone: separate contraction waves above and below. Am J Physiol Gastrointest Liver Physiol. 2006;290(3):G568–76. https://doi.org/10.1152/ajpgi.00280.2005.

    Article  CAS  PubMed  Google Scholar 

  70. Ghosh SK, Pandolfino JE, Kwiatek MA, Kahrilas PJ. Oesophageal peristaltic transition zone defects: real but few and far between. Neurogastroenterol Motil. 2008;20(12):1283–90. https://doi.org/10.1111/j.1365-2982.2008.01169.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Breen E, Bleich L, Loeser C. Myasthenia gravis presenting with dysphagia in an elderly male: a case report. Am J Med. 2014;127(9):e7–8. https://doi.org/10.1016/j.amjmed.2014.05.028.

    Article  PubMed  Google Scholar 

  72. Grob D, Brunner NG, Namba T. The natural course of myasthenia gravis and effect of therapeutic measures. Ann N Y Acad Sci. 1981;377:652–69.

    Article  CAS  Google Scholar 

  73. Haider-Ali AM, MacGregor FB, Stewart M. Myasthenia gravis presenting with dysphagia and postoperative ventilatory failure. J Laryngol Otol. 1998;112(12):1194–5.

    Article  CAS  Google Scholar 

  74. Khan OA, Campbell WW. Myasthenia gravis presenting as dysphagia: clinical considerations. Am J Gastroenterol. 1994;89(7):1083–5.

    Google Scholar 

  75. Roberts CG, Hummers LK, Ravich WJ, Wigley FM, Hutchins GM. A case-control study of the pathology of oesophageal disease in systemic sclerosis (scleroderma). Gut. 2006;55(12):1697–703. https://doi.org/10.1136/gut.2005.086074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sjogren RW. Gastrointestinal motility disorders in scleroderma. Arthritis Rheum. 1994;37(9):1265–82.

    Article  CAS  Google Scholar 

  77. Pandolfino JE, Roman S, Carlson D, Luger D, Bidari K, Boris L, Kwiatek MA, Kahrilas PJ. Distal esophageal spasm in high-resolution esophageal pressure topography: defining clinical phenotypes. Gastroenterology. 2011;141(2):469–75. https://doi.org/10.1053/j.gastro.2011.04.058.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mostafa RM. Interstitial cells of Cajal, the maestro in health and disease. World J Gastroenterol. 2010;16(26):3239. https://doi.org/10.3748/wjg.v16.i26.3239.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Faussone-Pellegrini M, Cortesini C. Ultrastructural features and localization of the interstitial cells of Cajal in the smooth muscle coat of human esophagus. J Submicrosc Cytol. 1985;17(2):187–97.

    CAS  PubMed  Google Scholar 

  80. Ward SM, Morris G, Reese L, Wang X-Y, Sanders KM. Interstitial cells of Cajal mediate enteric inhibitory neurotransmission in the lower esophageal and pyloric sphincters. Gastroenterology. 1998;115(2):314–29.

    Article  CAS  Google Scholar 

  81. Gockel I, Bohl JR, Eckardt VF, Junginger T. Reduction of interstitial cells of Cajal (ICC) associated with neuronal nitric oxide synthase (n-NOS) in patients with achalasia. Am J Gastroenterol. 2008;103(4):856–64. https://doi.org/10.1111/j.1572-0241.2007.01667.x.

    Article  PubMed  Google Scholar 

  82. Streutker CJ, Huizinga JD, Driman DK, Riddell RH. Interstitial cells of Cajal in health and disease. Part I: normal ICC structure and function with associated motility disorders. Histopathology. 2007;50(2):176–89. https://doi.org/10.1111/j.1365-2559.2006.02493.x.

    Article  CAS  PubMed  Google Scholar 

  83. Dodds WJ, Stewart ET, Hodges D, Zboralske FF. Movement of the feline esophagus associated with respiration and peristalsis. An evaluation using tantalum markers. J Clin Invest. 1973;52(1):1–13. https://doi.org/10.1172/jci107152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Stewart ET, Dodds WJ. Marking the feline esophagus with small tantalum wires an experimental technic. Radiology. 1969;93(1):176–7.

    Article  CAS  Google Scholar 

  85. Sugarbaker DJ, Rattan S, Goyal RK. Mechanical and electrical activity of esophageal smooth muscle during peristalsis. Am J Phys. 1984;246(2 Pt 1):G145–50.

    CAS  Google Scholar 

  86. Christensen J, Lund GF. Esophageal responses to distension and electrical stimulation. J Clin Invest. 1969;48(2):408–19. https://doi.org/10.1172/jci105998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mittal RK. Regulation and dysregulation of esophageal peristalsis by the integrated function of circular and longitudinal muscle layers in health and disease. Am J Physiol Gastrointest Liver Physiol. 2016;311(3):G431–43. https://doi.org/10.1152/ajpgi.00182.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mittal RK. Longitudinal muscle of the esophagus: its role in esophageal health and disease. Curr Opin Gastroenterol. 2013;29(4):421–30. https://doi.org/10.1097/MOG.0b013e3283622b57.

    Article  CAS  PubMed  Google Scholar 

  89. Mittal RK, Padda B, Bhalla V, Bhargava V, Liu J. Synchrony between circular and longitudinal muscle contractions during peristalsis in normal subjects. Am J Physiol Gastrointest Liver Physiol. 2006;290(3):G431–8. https://doi.org/10.1152/ajpgi.00237.2005.

    Article  CAS  PubMed  Google Scholar 

  90. Miller LS, Liu JB, Colizzo FP, Ter H, Marzano J, Barbarevech C, Helwig K, Leung L, Goldberg BB, Hedwig K. Correlation of high-frequency esophageal ultrasonography and manometry in the study of esophageal motility. Gastroenterology. 1995;109(3):832–7.

    Article  CAS  Google Scholar 

  91. Yamamoto Y, Liu J, Smith TK, Mittal RK. Distension-related responses in circular and longitudinal muscle of the human esophagus: an ultrasonographic study. Am J Phys. 1998;275(4 Pt 1):G805–11.

    CAS  Google Scholar 

  92. Patel N, Jiang Y, Mittal RK, Kim TH, Ledgerwood M, Bhargava V. Circular and longitudinal muscles shortening indicates sliding patterns during peristalsis and transient lower esophageal sphincter relaxation. Am J Physiol Gastrointest Liver Physiol. 2015;309(5):G360–7. https://doi.org/10.1152/ajpgi.00067.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jung HY, Puckett JL, Bhalla V, Rojas-Feria M, Bhargava V, Liu J, Mittal RK. Asynchrony between the circular and the longitudinal muscle contraction in patients with nutcracker esophagus. Gastroenterology. 2005;128(5):1179–86.

    Article  Google Scholar 

  94. Tung HN, Schulze-Delrieu K, Shirazi S, Noel S, Xia Q, Cue K. Hypertrophic smooth muscle in the partially obstructed opossum esophagus. The model: histological and ultrastructural observations. Gastroenterology. 1991;100(4):853–64.

    Article  CAS  Google Scholar 

  95. Mittal R. Hypertrophy of the muscularis propria of the lower esophageal sphincter and the body of the esophagus in patients with primary motility disorders of the esophagus. Am J Gastroenterol. 2003;98(8):1705–12. https://doi.org/10.1016/s0002-9270(03)00436-2.

    Article  PubMed  Google Scholar 

  96. Nehra D, Lord RV, DeMeester TR, Theisen J, Peters JH, Crookes PF, Bremner CG. Physiologic basis for the treatment of epiphrenic diverticulum. Ann Surg. 2002;235(3):346–54.

    Article  Google Scholar 

  97. Carlson DA, Gluskin AB, Mogni B, Koo J, Sood R, Lin Z, Pandolfino JE. Esophageal diverticula are associated with propagating peristalsis: a study utilizing high-resolution manometry. Neurogastroenterol Motil. 2015;28:392. https://doi.org/10.1111/nmo.12739.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Lin S, Brasseur JG, Pouderoux P, Kahrilas PJ. The phrenic ampulla: distal esophagus or potential hiatal hernia? Am J Phys. 1995;268(2 Pt 1):G320–7.

    CAS  Google Scholar 

  99. Kwiatek MA, Nicodeme F, Pandolfino JE, Kahrilas PJ. Pressure morphology of the relaxed lower esophageal sphincter: the formation and collapse of the phrenic ampulla. Am J Physiol Gastrointest Liver Physiol. 2012;302(3):G389–96. https://doi.org/10.1152/ajpgi.00385.2011.

    Article  CAS  PubMed  Google Scholar 

  100. Pandolfino JE, Leslie E, Luger D, Mitchell B, Kwiatek MA, Kahrilas PJ. The contractile deceleration point: an important physiologic landmark on oesophageal pressure topography. Neurogastroenterol Motil. 2010;22(4):395. https://doi.org/10.1111/j.1365-2982.2009.01443.x.

    Article  CAS  PubMed  Google Scholar 

  101. Berridge FR, Friedland GW, Tagart RE. Radiological landmarks at the oesophago-gastric junction. Thorax. 1966;21(6):499–510.

    Article  CAS  Google Scholar 

  102. Mittal RK, Fisher MJ. Electrical and mechanical inhibition of the crural diaphragm during transient relaxation of the lower esophageal sphincter. Gastroenterology. 1990;99(5):1265–8.

    Article  CAS  Google Scholar 

  103. Heitmann P, Wolf BS, Sokol EM, Cohen BR. Simultaneous cineradiographic-manometric study of the distal esophagus: small hiatal hernias and rings. Gastroenterology. 1966;50(6):737–53.

    CAS  PubMed  Google Scholar 

  104. Wolf BS. The definition of a sliding hiatal hernia. A radiologist’s point of view. Am J Dig Dis. 1960;5:168–73.

    Article  CAS  Google Scholar 

  105. Sloan S, Kahrilas PJ. Impairment of esophageal emptying with hiatal hernia. Gastroenterology. 1991;100(3):596–605.

    Article  CAS  Google Scholar 

  106. Lin S, Ke M, Xu J, Kahrilas PJ. Impaired esophageal emptying in reflux disease. Am J Gastroenterol. 1994;89(7):1003–6.

    Google Scholar 

  107. Liebermann-Meffert D. Muscular equivalent of the lower esophageal sphincter. Gastroenterology. 1978;76:31.

    Google Scholar 

  108. Gahagan T. The function of the musculature of the esophagus and stomach in the esophagogastric sphincter mechanism. Surg Gynecol Obstet. 1962;114:293–303.

    CAS  PubMed  Google Scholar 

  109. Stein HJ, Liebermann-Meffert D, DeMeester TR, Siewert JR. Three-dimensional pressure image and muscular structure of the human lower esophageal sphincter. Surgery. 1995;117(6):692–8.

    Article  CAS  Google Scholar 

  110. Mattioli S, Pilotti V, Felice V, Di Simone MP, D’Ovidio F, Gozzetti G. Intraoperative study on the relationship between the lower esophageal sphincter pressure and the muscular components of the gastro-esophageal junction in achalasic patients. Ann Surg. 1993;218(5):635–9.

    Article  CAS  Google Scholar 

  111. Liu J, Parashar VK, Mittal RK. Asymmetry of lower esophageal sphincter pressure: is it related to the muscle thickness or its shape? Am J Phys. 1997;272(6 Pt 1):G1509–17.

    CAS  Google Scholar 

  112. Mittal RK, Zifan A, Kumar D, Ledgerwood-Lee M, Ruppert E, Ghahremani G. Functional morphology of the lower esophageal sphincter and crural diaphragm determined by three-dimensional high-resolution esophago-gastric junction pressure profile and CT imaging. Am J Physiol Gastrointest Liver Physiol. 2017;313(3):G212–9. https://doi.org/10.1152/ajpgi.00130.2017.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Onimaru M, Inoue H, Ikeda H, Sato C, Sato H, Phalanusitthepha C, Santi EG, Grimes KL, Ito H, Kudo SE. Greater curvature myotomy is a safe and effective modified technique in per-oral endoscopic myotomy (with videos). Gastrointest Endosc. 2015;81(6):1370–7. https://doi.org/10.1016/j.gie.2014.11.014.

    Article  PubMed  Google Scholar 

  114. Peters J. What do the esophagus and a jump rope have in common. Arch Surg. 2012;147(4):357.

    Article  Google Scholar 

  115. Curtis DJ, Cruess DF, Berg T. The cricopharyngeal muscle: a videorecording review. Am J Roentgenol. 1984;142(3):497–500.

    Article  CAS  Google Scholar 

  116. Demeester TR, Johnson LF, Kent AH. Evaluation of current operations for the prevention of gastroesophageal reflux. Ann Surg. 1974;180(4):511–25.

    Article  CAS  Google Scholar 

  117. Hagen JA, DeMeester TR. Anatomy of the esophagus. In: Shields TW, LoCicero J, Ponn RB, et al., editors. General thoracic surgery. International textbook of medicine, vol. 2. 6th ed. Philadelphia: Lippincott Williams & Wilkins; 2005. p. 1885–93.

    Google Scholar 

  118. Kahrilas PJ, Lin S, Spiess AE, Brasseur JG, Joehl RJ, Manka M. Impact of fundoplication on bolus transit across esophagogastric junction. Am J Phys. 1998;275(6 Pt 1):G1386–93.

    CAS  Google Scholar 

  119. Jiang Y, Sandler B, Bhargava V, Mittal RK. Antireflux action of Nissen fundoplication and stretch-sensitive mechanism of lower esophageal sphincter relaxation. Gastroenterology. 2011;140(2):442–9. https://doi.org/10.1053/j.gastro.2010.10.010.

    Article  PubMed  Google Scholar 

  120. Scheffer RC, Tatum RP, Shi G, Akkermans LM, Joehl RJ, Kahrilas PJ. Reduced tLESR elicitation in response to gastric distension in fundoplication patients. Am J Physiol Gastrointest Liver Physiol. 2003;284(5):G815–20. https://doi.org/10.1152/ajpgi.00247.2002.

    Article  CAS  PubMed  Google Scholar 

  121. del Genio G, Tolone S, del Genio F, Rossetti G, Brusciano L, Pizza F, Fei L, del Genio A. Total fundoplication controls acid and nonacid reflux: evaluation by pre- and postoperative 24-h pH-multichannel intraluminal impedance. Surg Endosc. 2008;22(11):2518–23. https://doi.org/10.1007/s00464-008-9958-0.

    Article  PubMed  Google Scholar 

  122. Blom D, Peters JH, DeMeester TR, Crookes PF, Hagan JA, DeMeester SR, Bremner C. Physiologic mechanism and preoperative prediction of new-onset dysphagia after laparoscopic Nissen fundoplication. J Gastrointest Surg. 2002;6(1):22–7. discussion 27-28

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 SAGES

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, L.F. (2019). Anatomy and Physiology of the Esophagus and Lower Esophageal Sphincter. In: Grams, J., Perry, K., Tavakkoli, A. (eds) The SAGES Manual of Foregut Surgery . Springer, Cham. https://doi.org/10.1007/978-3-319-96122-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96122-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96121-7

  • Online ISBN: 978-3-319-96122-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics