Skip to main content

Discovering an Integrated Network in Heterogeneous Data for Predicting lncRNA-miRNA Interactions

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10954))

Included in the following conference series:

Abstract

Long noncoding RNAs (lncRNAs) belong to a class of non-protein coding RNAs, which have recently been found to potentially act as a regulatory molecule in some important biological processes. MicroRNAs (miRNAs) have been proved by many biomedical studies to be closely associated to many human diseases. Recent studies have suggested that lncRNAs could potentially interact with miRNAs to modulate their regulatory roles. Hence, predicting lncRNA–miRNA interactions is biologically significant due to their potential roles in determining the effectiveness of gene regulations. As diverse heterogeneous datasets for describing lncRNA and miRNA have been made available, it becomes more feasible for us to develop a model to describe potential interactions between lncRNAs and miRNAs. In this work, we presented a new computational pipeline, called INLMI, to predict lncRNA–miRNA interactions by integrating the expression similarity network and the sequence similarity network. Based on a measure of similarities between these networks, INLMI computes an interaction score for a pair of lncRNA and a miRNA. The novelty of INLMI lies in that we used network integration on two similarity networks. Using a real data set, we have shown that INLMI can be a very effective approach as the model that it has learnt can be used to very accurately predict lncRNA-miRNA interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kung, J.T.Y., Colognori, D., Lee, J.T.: Long noncoding RNAs: past, present, and future. Genetics 193(3), 651–669 (2013)

    Article  Google Scholar 

  2. Salmena, L., Poliseno, L., Tay, Y., Kats, L., Pandolfi, P.P.: A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146(3), 353–358 (2011)

    Article  Google Scholar 

  3. Quinn, J.J., Chang, H.Y.: Unique features of long non-coding RNA biogenesis and function. Nat. Rev. Genet. 17, 47–62 (2016)

    Article  Google Scholar 

  4. Du, Z., Sun, T., Hacisuleyman, E., Fei, T., Wang, X., Brown, M., Rinn, J.L., et al.: Integrative analyses reveal a long noncoding RNA-mediated sponge regulatory network in prostate cancer. Nat. Commun. 7, 10982 (2016)

    Article  Google Scholar 

  5. Li, J.-H., Liu, S., Zhou, H., Qu, L.-H., Yang, J.-H.: Star base v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 42, D92–D97 (2013)

    Article  Google Scholar 

  6. Paraskevopoulou, M.D., Hatzigeorgiou, A.G.: Analyzing miRNA–lncRNA interactions. In: Long Non-Coding RNAs, pp. 271–286. Humana Press, New York (2016)

    Chapter  Google Scholar 

  7. Chen, X., Sun, Y.Z., Zhang, D.H., Li, J.Q., Yan, G.Y., An, J.Y., You, Z.H.: NRDTD: a database for clinically or experimentally supported non-coding RNAs and drug targets associations. Database 2017 (2017)

    Google Scholar 

  8. Li, J., et al.: LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief. Bioinf. 16, 806–812 (2015)

    Article  Google Scholar 

  9. Huang, Y.-A., Chan, K.C.C., You, Z.-H.: Constructing prediction models from expression profiles for large scale lncRNA-miRNA interaction profiling. Bioinformatics (2017)

    Google Scholar 

  10. Chen, X., Yan, C.C., Zhang, X., You, Z.H., Huang, Y.A., Yan, G.Y.: HGIMDA: heterogeneous graph inference for miRNA-disease association prediction. Oncotarget 7(40), 65257–65269 (2016)

    Google Scholar 

  11. Levine, E., Hwa, T.: Small RNAs establish gene expression thresholds. Curr. Opin. Microbiol. 11, 574–579 (2008)

    Article  Google Scholar 

  12. Mukherji, S., Ebert, M.S., Zheng, G.X., Tsang, J.S., Sharp, P.A., van Oudenaarden, A.: MicroRNAs can generate thresholds in target gene expression. Nat. Genet. 43(9), 854 (2011)

    Article  Google Scholar 

  13. Yi, H.C., You, Z.H., Huang, D.S., Li, X., Jiang, T.H., Li, L.P.: A deep learning framework for robust and accurate prediction of ncRNA-protein interactions using evolutionary information. Mol. Ther. Nucleic Acids 11, 337–344 (2018)

    Article  Google Scholar 

  14. Cock, P.J., et al.: Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009)

    Article  Google Scholar 

  15. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788 (1999)

    Article  Google Scholar 

  16. Gong, J., et al.: lncRNASNP: a database of SNPs in lncRNAs and their potential functions in human and mouse. Nucleic Acids Res. 43, D181–D186 (2015)

    Article  Google Scholar 

  17. Volders, P.-J., et al.: LNCipedia: a database for annotated human lncRNA transcript sequences and structures. Nucleic Acids Res. 41, D246–D251 (2013)

    Article  Google Scholar 

  18. Bu, D., et al.: NONCODE v3.0: integrative annotation of long noncoding RNAs. Nucleic Acids Res. 40, D210–D215 (2011)

    Article  Google Scholar 

  19. Kozomara, A., Griffiths-Jones, S.: miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 42, D68–D73 (2014)

    Article  Google Scholar 

  20. Betel, D., et al.: The microRNA.org resource: targets and expression. Nucleic Acids Res. 36, D149–D153 (2008)

    Article  Google Scholar 

  21. Chen, X., Huang, Y.A., You, Z.H., Yan, G.Y., Wang, X.S.: A novel approach based on KATZ measure to predict associations of human microbiota with non-infectious diseases. Bioinformatics 33(5), 733–739 (2016)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under Grant No. 61702424, and the National Natural Science Foundation of China under Grant No. 61572506.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Hong You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, P., Huang, YA., Chan, K.C.C., You, ZH. (2018). Discovering an Integrated Network in Heterogeneous Data for Predicting lncRNA-miRNA Interactions. In: Huang, DS., Bevilacqua, V., Premaratne, P., Gupta, P. (eds) Intelligent Computing Theories and Application. ICIC 2018. Lecture Notes in Computer Science(), vol 10954. Springer, Cham. https://doi.org/10.1007/978-3-319-95930-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95930-6_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95929-0

  • Online ISBN: 978-3-319-95930-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics