Skip to main content

Applications of Magnetoencephalography in Epilepsy and Tumor Surgery

  • Chapter
  • First Online:
Epilepsy Surgery and Intrinsic Brain Tumor Surgery

Abstract

Magnetoencephalography (MEG), which represents the most novel example of noninvasive functional mapping techniques, has contributed to the surgical management of epilepsy and brain tumors in two ways. First, in the case of epilepsy, MEG localization of interictal activity has facilitated placement of subdural (grid, strip, and depth) electrodes that are necessary for accurately localizing the ictal onset zone. Second, MEG has emerged as a reliable and accurate tool for localizing motor, somatosensory, and language-specific cortexes as well as determining hemispheric dominance for language in surgical candidates. In this chapter, we first present a general description of MEG, including background on instrumentation, underlying neurophysiology, and its applications in contemporary clinical practice. Subsequently, we review evidence demonstrating the utility of MEG as a noninvasive tool for approximating the ictal onset zone in addition to localizing eloquent cortex and determining the spatial relation of this cortex to epileptogenic tissue and mass lesions. Furthermore, the utility of MEG in presurgical mapping is discussed in light of some methodologic caveats, with recommendations on optimizing its contributions in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Papanicolaou AC. Fundamentals of functional brain imaging. The Netherlands: Swets & Zeitlinger; 1998.

    Google Scholar 

  2. Knowlton RC, Laxer KD, Aminoff MJ, Roberts TP, Wong ST, Rowley HA. Magnetoencephalography in partial epilepsy: clinical yield and localization accuracy. Ann Neurol. 1997;42:622–31. https://doi.org/10.1002/ana.410420413.

    Article  CAS  PubMed  Google Scholar 

  3. Pataraia E, Simos PG, Castillo EM, Billingsley RL, Sarkari S, Wheless JW, et al. Does magnetoencephalography add to scalp video-EEG as a diagnostic tool in epilepsy surgery? Neurology. 2004b;62:943–8.

    Article  CAS  PubMed  Google Scholar 

  4. Ebersole JS. Classification of MEG spikes in temporal lobe epilepsy. In: Yoshimoto T, Kotani M, Kuriki S, Karibe H, Nakasato N, editors. Recent advances in biomagnetism. Sendai: Tohoku University Press; 1999. p. 758–61.

    Google Scholar 

  5. Tenney JR, Fujiwara H, Horn PS, Rose DF. Comparison of magnetic source estimation to intracranial EEG, resection area, and seizure outcome. Epilepsia. 2014;55:1854–63.

    Article  PubMed  Google Scholar 

  6. Jung J, Bouet R, Delpuech C, Ryvlin P, Isnard J, Guenot M, et al. The value of magnetoencephalography for seizure-onset zone localization in magnetic resonance imaging-negative partial epilepsy. Brain. 2013;136:3176–86.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kanamori Y, Shigeto H, Hironaga N, Hagiwara K, Uehara T, Chatani H, et al. Minimum norm estimates in MEG can delineate the onset of interictal epileptic discharges: a comparison with ECoG findings. Neuroimage Clin. 2013;2:663–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Englot DJ, Nagarajan SS, Imber BS, Raygor KP, Honma SM, Mizuiri D, et al. Epileptogenic zone localization using magnetoencephalography predicts seizure freedom in epilepsy surgery. Epilepsia. 2015;56:949–58. https://doi.org/10.1111/epi.13002.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rubinger L, Chan C, D’Arco F, Moineddin R, Muthaffar O, Rutka JT, et al. Change in presurgical diagnostic imaging evaluation affects subsequent pediatric epilepsy surgery outcome. Epilepsia. 2016;57:32–40.

    Article  PubMed  Google Scholar 

  10. Brockhaus A, Lehnertz K, Wienbruch C, Kowalik A, Burr W, Elbert T, et al. Possibilities and limitations of magnetic source imaging of methohexital-induced epileptiform patterns in temporal lobe epilepsy patients. Electroencephalogr Clin Neurophysiol. 1997;102:423–36.

    Article  CAS  PubMed  Google Scholar 

  11. Butz M, Gross J, Timmermann L, Moll M, Freund HJ, Witte OW, Schnitzler A. Perilesional pathological oscillatory activity in the magnetoencephalogram of patients with cortical brain lesions. Neurosci Lett. 2004;355:93–6.

    Article  CAS  PubMed  Google Scholar 

  12. Englot DJ, Nagarajan SS, Wang DD, Rolston JD, Mizuiri D, Honma SM, et al. The sensitivity and significance of lateralized interictal slow activity on magnetoencephalography in focal epilepsy. Epilepsy Res. 2016;121:21–8. https://doi.org/10.1016/j.eplepsyres.2016.01.009.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Fernandez A, de Sola RG, Amo C, Turrero A, Zuluaga P, Maestu F, et al. Dipole density of low-frequency and spike magnetic activity: a reliable procedure in presurgical evaluation of temporal lobe epilepsy. J Clin Neurophysiol. 2004;21:254–66.

    Article  PubMed  Google Scholar 

  14. Gallen CC, Tecoma E, Iragui V, Sobel DF, Schwartz BJ, Bloom FE. Magnetic source imaging of abnormal low-frequency magnetic activity in presurgical evaluations of epilepsy. Epilepsia. 1997;38:452–60.

    Article  CAS  PubMed  Google Scholar 

  15. Ishibashi H, Simos PG, Castillo EM, Maggio WW, Wheless JW, Kim HL, et al. Detection and significance of focal, interictal, slow-wave activity visualized by magnetoencephalography for localization of a primary epileptogenic region. J Neurosurg. 2002a;96:724–30.

    Article  PubMed  Google Scholar 

  16. Kamada K, Saguer M, Moller M, Wicklow K, Katenhauser M, Kober H, Vieth J. Functional and metabolic analysis of cerebral ischemia using magnetoencephalography and proton magnetic resonance spectroscopy. Ann Neurol. 1997;42:554–63.

    Article  CAS  PubMed  Google Scholar 

  17. Assaf BA, Karkar KM, Laxer KD, Garcia PA, Austin EJ, Barbaro NM, Aminoff MJ. Ictal magnetoencephalography in temporal and extratemporal lobe epilepsy. Epilepsia. 2003;44:1320–7.

    Article  PubMed  Google Scholar 

  18. Eliashiv DS, Elsas S, Squires M, Fried K, Engel IJ. Ictal magnetic source imaging as a localizing tool in partial epilepsy. Neurology. 2002;59:1600–10.

    Article  CAS  PubMed  Google Scholar 

  19. Oishi M, Otsubo H, Kameyama S, Wachi M, Tanaka K, Masuda H, Tanaka R. Ictal magnetoencephalographic discharges from elementary visual hallucinations of status epilepticus. J Neurol Neurosurg Psychiatry. 2003a;74:525–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Stefan H, Schneider S, Feistel H, Pawlik G, Schuler P, Abraham-Fuchs K, et al. Ictal and interictal activity in partial epilepsy recorded with multichannel magnetoelectroencephalography: correlation of electroencephalography/electrocorticography, magnetic resonance imaging, single photon emission computed tomography, and positron emission tomography findings. Epilepsia. 1992;33:874–87.

    Article  CAS  PubMed  Google Scholar 

  21. Tilz C, Hummel C, Kettenmann B, Stefan H. Ictal onset localization of epileptic seizures by magnetoencephalography. Acta Neurol Scand. 2002;106:190–5.

    Article  CAS  PubMed  Google Scholar 

  22. Yoshinaga H, Ohtsuka Y, Watanabe Y, Inutsuka M, Kitamura Y, Kinugasa K, Ok E. Ictal MEG in two children with partial seizures. Brain and Development. 2004;26:403–8.

    Article  PubMed  Google Scholar 

  23. Almubarak S, Alexopoulos A, Von-Podewils F, Wang ZI, Kakisaka Y, Mosher JC, et al. The correlation of magnetoencephalography to intracranial EEG in localizing the epileptogenic zone: a study of the surgical resection outcome. Epilepsy Res. 2014;108:1581–90.

    Article  PubMed  Google Scholar 

  24. Papanicolaou AC, Pataraia E, Billingsley-Marshall R, Castillo EM, Wheless JW, Swank P, et al. Toward the substitution of invasive electroencephalography in epilepsy surgery. J Clin Neurophysiol. 2005;22:231–7.

    Article  PubMed  Google Scholar 

  25. Bennett-Back O, Ochi A, Widjaja E, Nambu S, Kamiya A, Go C, et al. Magnetoencephalography helps delineate the extent of the epileptogenic zone for surgical planning in children with intractable epilepsy due to porencephalic cyst/encephalomalacia. J Neurosurg Pediatr. 2014;14:271–8.

    Article  PubMed  Google Scholar 

  26. Mohamed IS, Gibbs SA, Robert M, Bouthillier A, Leroux JM, Khoa Nguyen D. The utility of magnetoencephalography in the presurgical evaluation of refractory insular epilepsy. Epilepsia. 2013;54:1950–9.

    Article  PubMed  Google Scholar 

  27. Iwasaki M, Nakasato N, Shamoto H, Nagamatsu K, Kanno A, Hatanaka K, et al. Surgical implications of neuromagnetic spike localization in temporal lobe epilepsy. Epilepsia. 2002;43:415–24.

    Article  PubMed  Google Scholar 

  28. Stefan H, Schuler P, Abraham-Fuchs K, Schneider S, Gebhardt M, Neubauer U, et al. Magnetic source localization and morphological changes in temporal lobe epilepsy: comparison of MEG/EEG, ECoG and volumetric MRI in presurgical evaluation of operated patients. Acta Neurol Scand Suppl. 1994;152:83–8.

    Article  CAS  PubMed  Google Scholar 

  29. Mamelak AN, Lopez N, Akhtari M, Sutherling WW. Magnetoencephalography-directed surgery in patients with neocortical epilepsy. J Neurosurg. 2002;97:865–73. https://doi.org/10.3171/jns.2002.97.4.0865.

    Article  PubMed  Google Scholar 

  30. Otsubo H, Ochi A, Elliott I, Chuang SH, Rutka JT, Jay V, et al. MEG predicts epileptic zone in lesional extrahippocampal epilepsy: 12 pediatric surgery cases. Epilepsia. 2001;42:1523–30.

    Article  CAS  PubMed  Google Scholar 

  31. Shiraishi H, Watanabe Y, Watanabe M, Inoue Y, Fujiwara T, Yagi K. Interictal and ictal magnetoencephalographic study in patients with medial frontal lobe epilepsy. Epilepsia. 2001;42:875–82.

    Article  CAS  PubMed  Google Scholar 

  32. Stefan H, Hummel C, Hopfengartner R, Pauli E, Tilz C, Ganslandt O, et al. Magnetoencephalography in extratemporal epilepsy. J Clin Neurophysiol. 2000;17:190–200.

    Article  CAS  PubMed  Google Scholar 

  33. Baumgartner C, Pataraia E, Lindinger G, Deecke L. Neuromagnetic recordings in temporal lobe epilepsy. J Clin Neurophysiol. 2000;17:177–89.

    Article  CAS  PubMed  Google Scholar 

  34. Bast T, Oezkan O, Rona S, Stippich C, Seitz A, Rupp A, et al. EEG and MEG source analysis of single and averaged interictal spikes reveals intrinsic epileptogenicity in focal cortical dysplasia. Epilepsia. 2004;45:621–31.

    Article  PubMed  Google Scholar 

  35. Burneo JG, Bebin M, Kuzniecky RI, Knowlton RC. Electroclinical and magnetoencephalographic studies in epilepsy patients with polymicrogyria. Epilepsy Res. 2004a;62:125–33.

    Article  PubMed  Google Scholar 

  36. Ishibashi H, Simos PG, Wheless JE, Zhang W, Baumgartner JE, Castillo EM, Papanicolaou AC. Somatosensory evoked magnetic fields in hemimegalencephaly. Neurol Res. 2002c;24:459–62.

    Article  PubMed  Google Scholar 

  37. Minami T, Tasaki K, Yamamoto T, Gondo K, Yanai S, Ueda K. Magneto-encephalographical analysis of focal cortical heterotopia. Dev Med Child Neurol. 1996;38:945–9.

    Article  CAS  PubMed  Google Scholar 

  38. Morioka T, Nishio S, Ishibashi H, Muraishi M, Hisada K, Shigeto H, et al. Intrinsic epileptogenicity of focal cortical dysplasia as revealed by magnetoencephalography and electrocorticography. Epilepsy Res. 1999;33:177–87.

    Article  CAS  PubMed  Google Scholar 

  39. Otsubo H, Iida K, Oishi M, Okuda C, Ochi A, Pang E, et al. Neurophysiologic findings of neuronal migration disorders: intrinsic epileptogenicity of focal cortical dysplasia on electroencephalography, electrocorticography, and magnetoencephalography. J Child Neurol. 2005;20:357–63.

    Article  PubMed  Google Scholar 

  40. Taniguchi M, Yoshimine T, Kato A, Maruno M, Hirabuki N, Nakamura H, et al. Dysembryoplastic neuroepithelial tumor in the insular cortex. Three dimensional magnetoencephalographic localization of epileptic discharges. Neurol Res. 1998;20:433–8.

    Article  CAS  PubMed  Google Scholar 

  41. Toulouse P, Agulhon C, Taussig D, Napuri S, Biraben A, Jannin P, et al. Magnetoencephalographic studies of two cases of diffuse subcortical laminar heterotopia or so-called double cortex. NeuroImage. 2003;19:1251–9.

    Article  PubMed  Google Scholar 

  42. Zhang W, Simos PG, Ishibashi H, Wheless JW, Castillo EM, Kim HL, et al. Multimodality neuroimaging evaluation improves the detection of subtle cortical dysplasia in seizure patients. Neurol Res. 2003;25:53–7.

    Article  CAS  PubMed  Google Scholar 

  43. Iida K, Otsubo H, Mohamed IS, Okuda C, Ochi A, Weiss SK, et al. Characterizing magnetoencephalographic spike sources in children with tuberous sclerosis complex. Epilepsia. 2005;46:1510–7.

    Article  PubMed  Google Scholar 

  44. Jansen FE, Huiskamp G, van Huffelen AC, Bourez-Swart M, Boere E, Gebbink T, et al. Identification of the epileptogenic tuber in patients with tuberous sclerosis: a comparison of high-resolution EEG and MEG. Epilepsia. 2006;47:108–14.

    Article  PubMed  Google Scholar 

  45. Kamimura T, Tohyama J, Oishi M, Akasaka N, Kanazawa O, Sasagawa M, et al. Magnetoencephalography in patients with tuberous sclerosis and localization-related epilepsy. Epilepsia. 2006;47:991–7.

    Article  PubMed  Google Scholar 

  46. Wu JY, Sutherling WW, Koh S, Salamon N, Jonas R, Yudovin S, et al. Magnetic source imaging localizes epileptogenic zone in children with tuberous sclerosis complex. Neurology. 2006;66:1270–2.

    Article  CAS  PubMed  Google Scholar 

  47. Xiao Z, Xiang J, Holowka S, Hunjan A, Sharma R, Otsubo H, Chuang S. Volumetric localization of epileptic activities in tuberous sclerosis using synthetic aperture magnetometry. Pediatr Radiol. 2006;36:16–21.

    Article  PubMed  Google Scholar 

  48. Hattori H, Yamano T, Tsutada T, Tsuyuguchi N, Kawawaki H, Shimogawara M. Magnetoencephalography in the detection of focal lesions in West syndrome. Brain and Development. 2001;23:528–32.

    Article  CAS  PubMed  Google Scholar 

  49. Ishibashi H, Simos PG, Wheless JW, Baumgartner JE, Kim HL, Davis RN, et al. Multimodality functional imaging evaluation in a patient with Rasmussen’s encephalitis. Brain and Development. 2002b;24:239–44.

    Article  PubMed  Google Scholar 

  50. Morioka T, Nishio S, Hisada K, Shigeto H, Yamamoto T, Fujii K, Fukui M. Neuromagnetic assessment of epileptogenicity in cerebral arteriovenous malformation. Neurosurg Rev. 2000;23:206–12.

    Article  CAS  PubMed  Google Scholar 

  51. Otsubo H, Snead OC 3rd. Magnetoencephalography and magnetic source imaging in children. J Child Neurol. 2001;16:227–35.

    CAS  PubMed  Google Scholar 

  52. Paetau R, Hamalainen M, Hari R, Kajola M, Karhu J, Larsen TA, et al. Magnetoencephalographic evaluation of children and adolescents with intractable epilepsy. Epilepsia. 1994;35:275–4.

    Article  CAS  PubMed  Google Scholar 

  53. Paetau R, Granstrom ML, Blomstedt G, Jousmaki V, Korkman M, Liukkonen E. Magnetoencephalography in presurgical evaluation of children with the Landau-Kleffner syndrome. Epilepsia. 1999;40:326–35.

    Article  CAS  PubMed  Google Scholar 

  54. Verrotti A, Pizzella V, Trotta D, Madonna L, Chiarelli F, Romani GL. Magnetoencephalography in pediatric neurology and in epileptic syndromes. Pediatr Neurol. 2003;28:253–61.

    Article  PubMed  Google Scholar 

  55. Yanai S, Minami T, Yamamoto T, Gondo K, Kira R, Tokunaga Y, Ueda K. Magnetoencephalographic analysis of hypsarrhythmia in West syndrome. J Epilepsy. 1997;10:131–8.

    Article  Google Scholar 

  56. Stefan H, Scheler G, Hummel C, Walter J, Romstock J, Buchfelder M, Blumcke I. Magnetoencephalography (MEG) predicts focal epileptogenicity in cavernomas. J Neurol Neurosurg Psychiatry. 2004;75:1309–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Amo C, Saldaña C, Hidalgo MG, Maestú F, Fernández A, Arrazola J, Ortiz T. Magnetoencephalographic localization of peritumoral temporal epileptic focus previous surgical resection. Seizure. 2003;12:19–22.

    Article  PubMed  Google Scholar 

  58. Patt S, Steenbeck J, Hochstetter A, Kraft R, Huonker R, Haueisen J, et al. Source localization and possible causes of interictal epileptic activity in tumor-associated epilepsy. Neurobiol Dis. 2000;7:260–9.

    Article  CAS  PubMed  Google Scholar 

  59. Schiffbauer H, Berger MS, Ferrari P, Freudenstein D, Rowley HA, Roberts TP. Preoperative magnetic source imaging for brain tumor surgery: a quantitative comparison with intraoperative sensory and motor mapping. J Neurosurg. 2002;97:1333–42.

    Article  PubMed  Google Scholar 

  60. Willemse RB, Hillebrand A, Ronner HE, Vandertop WP, Stam CJ. Magnetoencephalographic study of hand and foot sensorimotor organization in 325 consecutive patients evaluated for tumor or epilepsy surgery. Neuroimage Clin. 2016;10:46–53.

    Article  PubMed  Google Scholar 

  61. Smith JR, Schwartz BJ, Gallen C, Orrison W, Lewine J, Murro AM, et al. Multichannel magnetoencephalography in ablative seizure surgery outside the anteromesial temporal lobe. Stereotact Funct Neurosurg. 1995;65:81–5.

    Article  CAS  PubMed  Google Scholar 

  62. Ishibashi H, Morioka T, Nishio S, Shigeto H, Yamamoto T, Fukui M. Magnetoencephalographic investigation of somatosensory homunculus in patients with peri-Rolandic tumors. Neurol Res. 2001;23:29–38.

    Article  CAS  PubMed  Google Scholar 

  63. Morioka T, Yamamoto T, Katsuta T, Fujii K, Fukui M. Presurgical three-dimensional magnetic source imaging of the somatosensory cortex in a patient with a peri-Rolandic lesion: technical note. Neurosurgery. 1994;34:930–3; discussion, 933–4.

    CAS  PubMed  Google Scholar 

  64. Roberts TP, Ferrari P, Perry D, Rowley HA, Berger MS. Presurgical mapping with magnetic source imaging: comparisons with intraoperative findings. Brain Tumor Pathol. 2000;17:57–64.

    Article  CAS  PubMed  Google Scholar 

  65. Ganslandt O, Buchfelder M, Hastreiter P, Grummich P, Fahlbusch R, Nimsky C. Magnetic source imaging supports clinical decision making in glioma patients. Clin Neurol Neurosurg. 2004;107:20–6.

    Article  CAS  PubMed  Google Scholar 

  66. Korvenoja A, Kirveskari E, Aronen HJ, Avikainen S, Brander A, Huttunen J, et al. Sensorimotor cortex localization: comparison of magnetoencephalography, functional MR imaging, and intraoperative cortical mapping. Radiology. 2006;241:213–22.

    Article  PubMed  Google Scholar 

  67. Ganslandt O, Fahlbusch R, Nimsky C, Kober H, Moller M, Steinmeier R, et al. Functional neuronavigation with magnetoencephalography: outcome in 50 patients with lesions around the motor cortex. J Neurosurg. 1999;91:73–9.

    Article  CAS  PubMed  Google Scholar 

  68. Kirsch HE, Zhu Z, Honma S, Findlay A, Berger MS, Nagarajan SS. Predicting the location of mouth motor cortex in patients with brain tumors by using somatosensory evoked field measurements. J Neurosurg. 2007;107:481–7.

    Article  PubMed  Google Scholar 

  69. Breier JI, Simos PG, Wheless JW, Zouridakis G, Willmore LJ, Constantinou JEC, Papanicolaou AC. A magnetoencephalography study of cortical plasticity. Neurocase. 1999a;5:277–84.

    Article  Google Scholar 

  70. Burneo JG, Kuzniecky RI, Bebin M, Knowlton RC. Cortical reorganization in malformations of cortical development: a magnetoencephalographic study. Neurology. 2004b;63:1818–24.

    Article  PubMed  Google Scholar 

  71. Oishi M, Fukuda M, Kameyama S, Kawaguchi T, Masuda H, Tanaka R. Magnetoencephalographic representation of the sensorimotor hand area in cases of intracerebral tumour. J Neurol Neurosurg Psychiatry. 2003b;74:1649–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Papanicolaou AC, Simos PG, Breier JI, Wheless JW, Mancias P, Baumgartner JE. Brain plasticity for sensory and linguistic functions: a functional imaging study using magnetoencephalography with children and young adults. J Child Neurol. 2001;16:241–52.

    Article  CAS  PubMed  Google Scholar 

  73. Roberts TP, Zusman E, McDermott M, Barbaro N, Rowley HA. Correlation of functional magnetic source imaging with intraoperative cortical stimulation in neurosurgical patients. J Image Guid Surg. 1995;1:339–47.

    Article  CAS  PubMed  Google Scholar 

  74. Vates GE, Lawton MT, Wilson CB, McDermott MW, Halbach VV, Roberts TP, Rowley HA. Magnetic source imaging demonstrates altered cortical distribution of function in patients with arteriovenous malformations. Neurosurgery. 2002;51:614–23; discussion, 623–7.

    Article  PubMed  Google Scholar 

  75. Kassubeck J, Stippich C, Soros P. A motor field localization protocol using magnetoencephalography. Biomed Eng. 1996;41:334–5.

    Article  Google Scholar 

  76. Tarapore PE, Tate MC, Findlay AM, Honma SM, Mizuiri D, Berger MS, Nagarajan SS. Preoperative multimodal motor mapping: a comparison of magnetoencephalography imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation. J Neurosurg. 2012;117:354–62.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Castillo EM, Simos PG, Wheless JW, Baumgartner JE, Breier JI, Billingsley RL, et al. Integrating sensory and motor mapping in a comprehensive MEG protocol: clinical validity and replicability. NeuroImage. 2004;21:973–83.

    Article  PubMed  Google Scholar 

  78. Barnikol UB, Amunts K, Dammers J, Mohlberg H, Fieseler T, Malikovic A, et al. Pattern reversal visual evoked responses of V1/V2 and V5/MT as revealed by MEG combined with probabilistic cytoarchitectonic maps. NeuroImage. 2006;31:86–108.

    Article  PubMed  Google Scholar 

  79. Hashimoto T, Kashii S, Kikuchi M, Honda Y, Nagamine T, Shibasaki H. Temporal profile of visual evoked responses to pattern-reversal stimulation analyzed with a whole-head magnetometer. Exp Brain Res. 1999;125:375–82.

    Article  CAS  PubMed  Google Scholar 

  80. Hatanaka K, Nakasato N, Seki K, Kanno A, Mizoi K, Yoshimoto T. Striate cortical generators of the N75, P100 and N145 components localized by pattern reversal visual evoked magnetic fields. Tohoku J Exp Med. 1997;182:9–14.

    Article  CAS  PubMed  Google Scholar 

  81. Nakamura M, Kakigi R, Okusa T, Hoshiyama M, Watanabe K. Effects of check size on pattern reversal visual evoked magnetic field and potential. Brain Res. 2000;872:77–86.

    Article  CAS  PubMed  Google Scholar 

  82. Seki K, Nakasato N, Fujita S, Hatanaka K, Kawamura T, Kanno A, Yoshimoto T. Neuromagnetic evidence that the P100 component of the pattern reversal visual evoked response originates in the bottom of the calcarine fissure. Electroencephalogr Clin Neurophysiol. 1996;100:436–42.

    Article  CAS  PubMed  Google Scholar 

  83. Shigeto H, Tobimatsu S, Yamamoto T, Kobayashi T, Kato M. Visual evoked cortical magnetic responses to checkerboard pattern reversal stimulation: a study on the neural generators of N75, P100 and N145. J Neurol Sci. 1998;156:186–94.

    Article  CAS  PubMed  Google Scholar 

  84. Alberstone CD, Skirboll SL, Benzel EC, Sanders JA, Hart BL, Baldwin NG, et al. Magnetic source imaging and brain surgery: presurgical and intraoperative planning in 26 patients. J Neurosurg. 2000;92:79–90.

    Article  CAS  PubMed  Google Scholar 

  85. Inoue I, Fujimura M, Kumabe T, Nakasato N, Higano S, Tominaga T. Combined three-dimensional anisotropy contrast imaging and magnetoencephalography guidance to preserve visual function in a patient with an occipital lobe tumor. Minim Invasive Neurosurg. 2004;47:249–52.

    Article  CAS  PubMed  Google Scholar 

  86. Nakasato N, Kumabe T, Kanno A, Ohtomo S, Mizoi K, Yoshimoto T. Neuromagnetic evaluation of cortical auditory function in patients with temporal lobe tumors. J Neurosurg. 1997;86:610–8.

    Article  CAS  PubMed  Google Scholar 

  87. Nakasato N, Fujita S, Seki K, Kawamura T, Matani A, Tamura I, et al. Functional localization of bilateral auditory cortices using an MRI-linked whole head magnetoencephalography (MEG) system. Electroencephalogr Clin Neurophysiol. 1995;94:183–90.

    Article  CAS  PubMed  Google Scholar 

  88. Suzuki K, Okuda J, Nakasato N, Kanno A, Hatanaka K, Yamadori A, et al. Auditory evoked magnetic fields in patients with right hemisphere language dominance. Neuroreport. 1997;8:3363–6.

    Article  CAS  PubMed  Google Scholar 

  89. Dym RJ, Burns J, Freeman K, Lipton ML. Is functional MR imaging assessment of hemispheric language dominance as good as the Wada test?: a meta-analysis. Radiology. 2011;261:446–55.

    Article  PubMed  Google Scholar 

  90. Breier JI, Simos PG, Zouridakis G, Wheless JW, Willmore LJ, Constantinou JE, et al. Language dominance determined by magnetic source imaging: a comparison with the Wada procedure. Neurology. 1999b;53:938–45.

    Article  CAS  PubMed  Google Scholar 

  91. Breier JI, Simos PG, Wheless JW, Constantinou JEC, Papanicolaou AC. Hemispheric language dominance in children determined by magnetic source imaging. J Child Neurol. 2001;16:124–30.

    Article  CAS  PubMed  Google Scholar 

  92. Papanicolaou AC, Simos PG, Castillo EM, Breier JI, Sarkari S, Pataraia E, et al. Magnetocephalography: a noninvasive alternative to the Wada procedure. J Neurosurg. 2004;100:867–76.

    Article  PubMed  Google Scholar 

  93. Doss RC, Zhang W, Risse GL, Dickens DL. Lateralizing language with magnetic source imaging: validation based on the Wada test. Epilepsia. 2009;50:2242–8.

    Article  PubMed  Google Scholar 

  94. Maestu F, Ortiz T, Fernandez A, Amo C, Martin P, Fernandez S, Sola RG. Spanish language mapping using MEG: a validation study. NeuroImage. 2002;17:1579–86.

    Article  PubMed  Google Scholar 

  95. Rezaie R, Narayana S, Schiller K, Birg L, Wheless JW, Boop FA, Papanicolaou AC. Assessment of hemispheric dominance for receptive language in pediatric patients under sedation using magnetoencephalography. Front Hum Neurosci. 2014;8(657)

    Google Scholar 

  96. Kamada K, Sawamura Y, Takeuchi F, Kuriki A, Kawai K, Morita A, et al. Expressive and receptive language areas determined by a non-invasive reliable method using functional magnetic resonance imaging and magnetoencephalography. Neurosurgery. 2007;60:296–305.

    Article  PubMed  Google Scholar 

  97. Findlay AM, Ambrose JB, Cahn-Weiner DA, Houde JF, Honma S, Hinkley LB, et al. Dynamics of hemispheric dominance for language assessed by magnetoencephalographic imaging. Ann Neurol. 2012;71:668–86.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hirata M, Kato A, Taniguchi M, Saitoh Y, Ninomiya H, Ihara A, et al. Determination of language dominance with synthetic aperture magnetometry: comparison with the Wada test. NeuroImage. 2004;23:46–53.

    Article  PubMed  Google Scholar 

  99. McDonald CR, Thesen T, Hagler DJ Jr, Carlson C, Devinksy O, Kuzniecky R, et al. Distributed source modeling of language with magnetoencephalography: application to patients with intractable epilepsy. Epilepsia. 2009;50:2256–66.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Tanaka N, Liu H, Reinsberger C, Madsen JR, Bourgeois BF, Dworetzky BA, et al. Language lateralization represented by spatiotemporal mapping of magnetoencephalography. Am J Neuroradiol. 2013;34:558–63.

    Article  CAS  PubMed  Google Scholar 

  101. Bowyer SM, Moran JE, Mason KM, Constantinou JE, Smith BJ, Barkley GL, et al. MEG localization of language-specific cortex utilizing MR-FOCUSS. Neurology. 2004;62:2247–55.

    Article  CAS  PubMed  Google Scholar 

  102. Simos PG, Breier JI, Maggio WW, Gormley WB, Zouridakis G, Willmore LJ, et al. Atypical temporal lobe language representation: MEG and intraoperative stimulation mapping correlation. Neuroreport. 1999a;10:139–42.

    Article  CAS  PubMed  Google Scholar 

  103. Castillo EM, Breier JI, Wheless JW, Slater JD, Tandon N, Baumgartner JE, et al. Contributions of direct cortical stimulation and MEG recordings to identify “essential” language cortex. Epilepsia. 2005;46:324.

    Google Scholar 

  104. Kober H, Moller M, Nimsky C, Vieth J, Fahlbusch R, Ganslandt O. New approach to localize speech relevant brain areas and hemispheric dominance using spatially filtered magnetoencephalography. Hum Brain Mapp. 2001;14:236–50.

    Article  CAS  PubMed  Google Scholar 

  105. Castillo EM, Simos PG, Venkataraman V, Breier JI, Wheless JW, Papanicolaou AC. Mapping of expressive language cortex using magnetic source imaging. Neurocase. 2001;7:419–22.

    Article  CAS  PubMed  Google Scholar 

  106. Lüders HO. Epilepsy surgery. New York: Raven Press; 1992.

    Google Scholar 

  107. Ko DY, Kufta C, Scaffidi D, Sato S. Source localization determined by magnetoencephalography and electroencephalography in temporal lobe epilepsy: comparison with electrocorticography: technical case report. Neurosurgery. 1998;42:414–21; discussion, 421.

    Article  CAS  PubMed  Google Scholar 

  108. Sutherling WW, Crandall PH, Engel J Jr, Darcey TM, Cahan LD, Barth DS. The magnetic field of complex partial seizures agrees with intracranial localizations. Ann Neurol. 1987;21:548–58.

    Article  CAS  PubMed  Google Scholar 

  109. Ishibashi H, Morioka T, Shigeto H, Nishio S, Yamamoto T, Fukui M. Three-dimensional localization of subclinical ictal activity by magnetoencephalography: correlation with invasive monitoring. Surg Neurol. 1998;50:157–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Simos, P.G., Rezaie, R., Papanicolaou, A.C. (2019). Applications of Magnetoencephalography in Epilepsy and Tumor Surgery. In: Fountas, K., Kapsalaki, E. (eds) Epilepsy Surgery and Intrinsic Brain Tumor Surgery. Springer, Cham. https://doi.org/10.1007/978-3-319-95918-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95918-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95917-7

  • Online ISBN: 978-3-319-95918-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics