Skip to main content

Biosorption of Dye from Aqueous Solutions by a Waste Lignocellulosic Material

  • Chapter
  • First Online:
Recycling and Reuse Approaches for Better Sustainability

Part of the book series: Environmental Science and Engineering ((ENVENG))

Abstract

In the present study, the biosorption of Astrazon Blue FGRL (AB) which is one of the cationic dyes most commonly used in nylon and acrylic textiles from aqueous solution was studied onto tea waste (tea dust discharged after using), a waste lignocellulosic material. The effects of different parameters including biosorbent dosage, initial pH, contact time, initial dye concentration, and temperature were studied. Tea waste was characterized by Brunauer-Emmett-Teller (BET) surface area, FTIR, and SEM. The experimental equilibrium data were fitted to the Langmuir and Freundlich isotherms. The Freundlich isotherm model fitted to the experimental data better than the Langmuir isotherm. The maximum biosorption capacity, q max, was found to be 263.16 mg/g. The experimental data were discussed in detail comparing with some other low-cost adsorbents reported for AB removal in the previous literature, considering q max, adsorbent surface area, experimental conditions, isotherm models, and thermodynamics of the AB adsorption. The thermodynamic data indicated that AB biosorption was feasible but nonspontaneous, endothermic, and a chemisorption reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jia Z, Li Z, Ni T, Li S (2017) Adsorption of low-cost absorption materials based on biomass (Cortaderia selloana flower spikes) for dye removal: kinetics, isotherms and thermodynamic studies. J Mol Liq 229:285–292

    Article  CAS  Google Scholar 

  2. Pagnanelli F, Mainelli S, Veglio F, Toro L (2003) Heavy metal removal by olive pomace: biosorbent characterization and equilibrium modeling. Chem Eng Sci 58:4709–4717

    Article  CAS  Google Scholar 

  3. Eren E, Afsin B (2007) Investigation of a basic dye adsorption from aqueous solution onto raw and pre-treated sepiolite surfaces. Dyes Pigments 73:162–167

    Article  CAS  Google Scholar 

  4. Hong J-M, Lin B, Jiang J-S, Chen B-Y, Chang C-T (2014) Synthesis of pore-expanded mesoporous materials using waste quartz sand and the adsorption effects of methylene blue. J Ind Eng Chem 20:3667–3671

    Article  CAS  Google Scholar 

  5. Marungrueng K, Pavasant P (2006) Removal of basic dye (Astrazon Blue FGRL) using macroalga Caulerpa lentillifera. J Environ Manag 78:268–274

    Article  CAS  Google Scholar 

  6. Farah JY, El-Gendy N, Farahat LA (2007) Biosorption of Astrazone Blue basic dye from an aqueous solution using dried biomass of Baker’s yeast. J Hazard Mater 148:402–408

    Article  CAS  Google Scholar 

  7. Karagözoglu B, Tasdemir M, Demirbas E, Kobya M (2007) The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: kinetic and equilibrium studies. J Hazard Mater 147:297–306

    Article  CAS  Google Scholar 

  8. Punjongharn P, Meevasana K, Pavasant P (2008) Influence of particle size and salinity on adsorption of basic dyes by agricultural waste: dried Seagrape (Caulerpa lentillifera). J Environ Sci 20:760–768

    Article  CAS  Google Scholar 

  9. Ongen A, Ozcan HK, Elmaslar Ozbas E, Balkaya N (2012) Adsorption of Astrazon Blue FGRL onto sepiolite from aqueous solutions. Desalin Water Treat 40:129–136

    Article  CAS  Google Scholar 

  10. Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  11. Freundlich HMF (1906) Über die adsorption in lösungen. Z Phys Chem 57:385–470

    CAS  Google Scholar 

  12. Culp RL, Wesner GM, Culp GL (1978) Handbook of advanced wastewater treatment. Van Nostrand Reinholds Company, New York

    Google Scholar 

  13. Johnson TA, Jain N, Joshi HC, Prasad S (2008) Agricultural and agro-processing wastes as low cost adsorbents for metal removal from wastewater: a review. J Sci Ind Res 67:647–658

    CAS  Google Scholar 

  14. Vien-Lin D, Colthup NB, Fateley WG, Grasselli JC (1991) The handbook of infrared and raman characteristic frequencies of organic molecules. Academic Press, San Diego

    Google Scholar 

  15. Fazal A, Rafique U (2012) Acid/base treated spent black tea characterization of functional groups and lead sorptive mechanism. Int J Chem Environ Eng 3:217–224

    CAS  Google Scholar 

  16. Kapoor A, Viraraghavan T (1997) Heavy metal biosorption sites in Aspergillus niger. Bioresour Technol 61:221–227

    Article  CAS  Google Scholar 

  17. Malkoc E, Nuhoglu Y (2006) Removal of Ni(II) ions from aqueous solutions using waste of tea factory: adsorption on a fixed-bed column. J Hazard Mater B135:328–336

    Article  CAS  Google Scholar 

  18. Uddin MT, Islam MA, Mahmud S, Rukanuzzaman M (2009) Adsorptive removal of methylene blue by tea waste. J Hazard Mater 164:53–60

    Article  CAS  Google Scholar 

  19. Auta M, Hameed BH (2011) Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of Acid Blue 25 dye. Chem Eng J 171:502–509

    Article  CAS  Google Scholar 

  20. Malkoc E, Nuhoglu Y (2006b) Fixed bed studies for the sorption of chromium(VI) onto tea factory waste. Chem Eng Sci 61:4363–4372

    Article  CAS  Google Scholar 

  21. Yang X, Cui X (2013) Adsorption characteristics of Pb(II) on alkali treated tea residue. Water Res Ind 3:1–10

    Article  CAS  Google Scholar 

  22. Jiang Z, Xie J, Jiang D, Yan Z, Jing J, Liu D (2014) Enhanced adsorption of hydroxyl contained/anionic dyes on nonfunctionalized Ni@SiO2 core-shell nanoparticles: kinetic and thermodynamic profile. Appl Surf Sci 292:301–310

    Article  CAS  Google Scholar 

  23. Malekbala MR, Hosseini S, Yazdi SK, Soltani SM, Malekbala MR (2012) The study of the potential capability of sugar beet pulp on the removal efficiency of two cationic dyes. Chem Eng Res Design 90(5):704–712

    Article  CAS  Google Scholar 

  24. Sánchez-Martín J, González-Velasco M, Beltrán-Heredia J, Gragera-Carvajal J, Salguero-Fernández J (2010) Novel tannin-based adsorbent in removing cationic dye (methylene blue) from aqueous solution: kinetics and equilibrium studies. J Hazard Mater 174:9–16

    Article  CAS  Google Scholar 

  25. Baek MH, Ijagbemi CO, Se-Jin O, Kim DS (2010) Removal of malachite green from aqueous solution using degreased coffee bean. J Hazard Mater 176:820–828

    Article  CAS  Google Scholar 

  26. Giahi M, Rakhshaee R, Bagherinia MA (2011) Removal of methylene blue by tea wastages from the synthesis waste waters. Chinese Chem Letters 22:225–228

    Article  CAS  Google Scholar 

  27. Kumar KV, Sivanesan S, Ramamurthi V (2005) Adsorption of malachite green onto Pithophora sp., a fresh water algae: equilibrium and kinetic modeling. Process Biochem 40:2865–2872

    Article  CAS  Google Scholar 

  28. Liu MH, Huang JH (2006) Removal and recovery of cationic dyes from aqueous solutions using spherical sulfonic lignin adsorbent. J Appl Polym Sci 101:2284–2291

    Article  CAS  Google Scholar 

  29. Chen H, Zhao J, Dai G, Wu J, Yan H (2010) Adsorption characteristics of Pb(II) from aqueous solution onto a natural biosorbent, fallen Cinnamomum camphora leaves. Desalination 262:174–182

    Article  CAS  Google Scholar 

  30. Nasuha N, Hameed BH, Mohd Din AT (2010) Rejected tea as a potential low-cost adsorbent for the removal of methylene blue. J Hazard Mater 175:126–132

    Article  CAS  Google Scholar 

  31. Dhodapkar R, Rao NN, Pande SP, Kaul SN (2006) Removal of basic dyes from aqueous medium using a novel polymer: Jalshakti. Bioresour Technol 97:877–885

    Article  CAS  Google Scholar 

  32. Rubin E, Rodriguez P, Herrero R, Cremades J, Barbara I, Sastre de Vicente ME (2005) Removal of methylene blue from aqueous solutions using as biosorbent Sargassum muticum: an invasive macroalga in Europe. J Chem Technol Biotechnol 80:291–298

    Article  CAS  Google Scholar 

  33. Cay S, Uyanık A, Ozaşık A (2004) Single and binary component adsorption on copper (II) and cadmium (II) from aqueous solution using tea industry waste. Sep Purif Technol 38:273–280

    Article  CAS  Google Scholar 

  34. Sharma P, Kaur R, Baskar C, Chung W-J (2010) Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination 259:249–257

    Article  CAS  Google Scholar 

  35. El Ashtoukhy ESZ (2009) Loofa egyptiaca as a novel adsorbent for removal of direct blue dye from aqueous solution. J Environ Manag 90:2755–2761

    Article  CAS  Google Scholar 

  36. Li K, Zheng Z, Huang X, Zhao G, Feng J, Zhang J (2009) Equilibrium, kinetic and thermodynamic studies on the adsorption of 2-nitroaniline onto activated carbon prepared from cotton stalk fibre. J Hazard Mater 166:213–220

    Article  CAS  Google Scholar 

  37. Gueu S, Yao B, Adouby K, Ado G (2007) Kinetics and thermodynamics study of lead adsorption on to activated carbons from coconut and seed hull of the palm tree. Int J Environ Sci Technol 4:11–17

    Article  CAS  Google Scholar 

  38. Yazdani M, Mahmoodi NM, Arami M, Bahrami H (2012) Surfactant-modified feldspar: isotherm, kinetic, and thermodynamic of binary system dye removal. J Appl Polym Sci 126:340–349

    Article  CAS  Google Scholar 

  39. Nasuha N, Hameed BH (2011) Adsorption of methylene blue from aqueous solution onto NaOH-modified rejected tea. Chem Eng J 166:783–786

    Article  CAS  Google Scholar 

  40. Eren E (2009) Investigation of a basic dye removal from aqueous solution onto chemically modified Unye bentonite. J Hazard Mater 166:88–93

    Article  CAS  Google Scholar 

  41. Amarasinghe BMWPK, Williams AR (2007) Tea waste as a low cost adsorbent for the removal of Cu and Pb from wastewater. Chem Eng J 132:299–309

    Article  CAS  Google Scholar 

  42. Kavitha D, Namasivayam C (2008) Capacity of activated carbon in the removal of acid brilliant blue: determination of equilibrium and kinetic model parameters. Chem Eng J 139:453–461

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Research Project Unit at Istanbul University (Project No: BYP–5090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilgün Balkaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Balkaya, N. (2019). Biosorption of Dye from Aqueous Solutions by a Waste Lignocellulosic Material. In: Balkaya, N., Guneysu, S. (eds) Recycling and Reuse Approaches for Better Sustainability. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-95888-0_23

Download citation

Publish with us

Policies and ethics