Skip to main content

Intravitreal Injection Drug Delivery for Retina and Posterior Segment Disease: Challenges and the Future Ahead

  • Chapter
  • First Online:
Drug Delivery for the Retina and Posterior Segment Disease
  • 788 Accesses

Abstract

Intravitreal drug delivery system has been found to successfully cross the blood-ocular barrier and providing an immediate healing effect. Although these advantages help in overcoming the challenges faced by conventional treatment methods, intravitreal injections have to be given by a skilled physician with precaution. Currently, the novel implants could replace injections, which prevent the side effects. The implants or injections can contain formulations involving liposomes, nanoparticles, and hydrogels to administer sustained drug release to the ocular tissues. Sterilization is ensured via the use of membrane filters for aqueous and oil-based solutions. Meanwhile, stability of active ingredients is preserved by controlling its storage environment. The hydrogel contact lens drug delivery system and suprachoroidal space (SCS) system have displayed great improvement in targeting precision when tested on animals. With recent studies involving in vivo and ex vivo models, the chapter briefly talks about the advances as well as drawbacks in terms of tackling ocular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ambati J, et al. Transscleral drug delivery to the retina and choroid. Prog Retin Eye Res. 2002;21(2):145–51.

    Article  CAS  Google Scholar 

  2. Ma F, Nan K, Lee S, Beadle JR, Hou H, Freeman WR, Hostetler KY, Cheng L. Micelle formulation of hexadecyloxypropyl-cidofovir (HDP-CDV) as an intravitreal long-lasting delivery system. Eur J Pharm Biopharm. 2015 Jan;89:271–9.

    Article  CAS  Google Scholar 

  3. Yoav H, Frederic L, Benita S. Drug-loaded nanocarriers for back-of-the-eye diseases- formulation limitations. J Drug Deliv Sci Technol. 2015;30:331–41.

    Article  Google Scholar 

  4. Del Amo EM, Rimpelä A-K, Heikkinen E, Kari OK, Ramsay E, Lajunen T, Schmitt M, Pelkonen L, Bhattacharya M, Richardson D, Subrizi A, Turunen T, Reinisalo M, Itkonen J, Toropainen E, Casteleijn M, Kidron H, Antopolsky M, Vellonen K-S, Ruponen M, Urtti A. Pharmacokinetic aspects of retinal drug delivery. Prog Retin Eye Res. 2017;57:134. https://doi.org/10.1016/j.preteyeres.2016.12.001.

    Article  CAS  PubMed  Google Scholar 

  5. Meyer CH, Krohne TU, Charbel Issa P, Liu Z, Holz FG. Routes for drug delivery to the eye and retina: intravitreal injections. Dev Ophthalmol. 2016;55:63–70. https://doi.org/10.1159/000431143. Epub 2015 Oct 26

    Article  PubMed  Google Scholar 

  6. Kurz D, Ciulla TA, et al. Ophthalmol Clin N Am. 2002;15:405–10.

    Article  Google Scholar 

  7. Fernández-Ferreiro A, Luaces-Rodríguez A, Aguiar P, Pardo-Montero J, González-Barcia M, García-Varela L, Herranz M, Silva-Rodríguez J, Gil-Martínez M, Bermúdez MA, Vieites-Prado A. Preclinical PET study of intravitreal injections intravitreal preclinical PK study with PET/CT imaging. Invest Ophthalmol Vis Sci. 2017;58(7):2843–51.

    PubMed  Google Scholar 

  8. Haghjou N, Abdekhodaie MJ, Cheng YL. Retina-choroid-sclera permeability for ophthalmic drugs in the vitreous to blood direction: quantitative assessment. Pharm Res. 2013;30(1):41–59.

    Article  CAS  Google Scholar 

  9. Andrés-Guerrero V, Bravo-Osuna I, Pastoriza P, Molina-Martinez IT, Rocí H-V. Novel technologies for the delivery of ocular therapeutics in glaucoma. J Drug Deliv Sci Technol. 2017;42:181. https://doi.org/10.1016/j.jddst.2017.07.001.

    Article  CAS  Google Scholar 

  10. Contia B, et al. Biodegradable microspheres for the intravitreal administration of acyclovir: in vitro/in vivo evaluation. Eur J Pharm Sci. 1997;5(5):287–93.

    Article  Google Scholar 

  11. Bochot A, Fattal E. Liposomes for intravitreal drug delivery: a state of the art. J Control Release. 2012;161:628–34.

    Article  CAS  Google Scholar 

  12. Pachis K, Blazaka M, Klepetsanis P, Naoumidi etl M. Sustained release of intravitreal flurbiprofen from a novel drug-in-liposome-in-hydrogel formulation. Eur J Pharm Sci. 2017;109:324–33.

    Article  CAS  Google Scholar 

  13. Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog Retin Eye Res. 2010;29:596–609.

    Article  CAS  Google Scholar 

  14. Zhou HY, et al. Nanoparticles in the ocular drug delivery. Int J Ophthalmol. 2013;6(3):390–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Janoria GK, et al. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv. 2007;4(4):371–88.

    Article  CAS  Google Scholar 

  16. Marta M, et al. Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci. 2001;12(3):251–9.

    Article  Google Scholar 

  17. Joseph RR, Venkatraman SS. Drug delivery to the eye: what benefits do nanocarriers offer? Nanomedicine (Lond). 2017;12(6):683–702.

    CAS  Google Scholar 

  18. Zhang L, Shen W, Luan J, Yang D, Wei G, Yu L, Lu W, Ding J. Sustained intravitreal delivery of dexamethasone using an injectable and biodegradable thermogel. Acta Biomater. 2015 Sep;23:271–81.

    Article  CAS  Google Scholar 

  19. Linhua Z, et al. Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. Int J Nanomedicine. 2009;4:175–83.

    Google Scholar 

  20. Puras G, Mashal M, Agirre M, Ojeda E, Grijalvo S, et al. A novel cationic niosome formulation for gene delivery to the retina. J Control Release. 2014 Jan 28;174:27–36.

    Article  CAS  Google Scholar 

  21. Baranowski P, et al. Ophthalmic drug dosage forms: characterisation and research methods. Sci World J. 2014., Article ID 861904;2014:1.

    Article  Google Scholar 

  22. Timothy WO, et al. Cannulation of the Suprachoroidal space: a novel drug delivery methodology to the posterior segment. Am J Ophthalmol. 2006;142(5):777–87.

    Article  Google Scholar 

  23. Awwad S, Lockwood A, Brocchini S, Peng T. Khaw PT. The PK-Eye: a novel in vitro ocular flow model for use in preclinical drug development. J Pharm Sci. 2015;104(10):3330–42.

    Article  CAS  Google Scholar 

  24. Tran J, Craven C, Wabner K, Schmit J, Matter B, Kompella U, Grossniklaus HE, Olsen TW. A Pharmacodynamic analysis of choroidal neovascularization in a porcine model using three targeted drugs. Invest Ophthalmol Vis Sci. 2017 Jul;58(9):3732–40.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehta, T., Momin, M. (2018). Intravitreal Injection Drug Delivery for Retina and Posterior Segment Disease: Challenges and the Future Ahead. In: Patel, J., Sutariya, V., Kanwar, J., Pathak, Y. (eds) Drug Delivery for the Retina and Posterior Segment Disease. Springer, Cham. https://doi.org/10.1007/978-3-319-95807-1_22

Download citation

Publish with us

Policies and ethics