Skip to main content

Numerical Simulation of Surface Subsidence After the Collapse of a Mine

  • Conference paper
  • First Online:
Enhancements in Applied Geomechanics, Mining, and Excavation Simulation and Analysis (GeoChina 2018)

Part of the book series: Sustainable Civil Infrastructures ((SUCI))

Abstract

Surface subsidence is a concern for many underground mining activities. If not predicted, this phenomenon can cause severe infrastructure damage. In this paper, a computer model is used to predict surface subsidence after the controlled collapse of a coal mine at Naburn in North Yorkshire, England. Scarcity of data on the characteristics of deep underground distressed and caved zones around coal mining excavations makes the numerical prediction of mining-induced subsidence very difficult. The authors derive appropriate input parameters for the numerical model using available borehole data with all necessary justifications provided. Simulations are performed using the commercial software FLAC3D. Different constitutive models, such as Mohr-Coulomb, modified Hoek-Brown, strain-softening, double-yield, and modified Cam-clay are used to obtain surface subsidence profiles, which are compared against measurements taken at the site. Special attention is given to numerically simulating processes involved in the underground movements. It is shown that none of the models listed above can reasonably predict the surface subsidence profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Itasca.: Manual FLAC3D Version 5.01 (2013)

    Google Scholar 

  • Badr, S., Ozbay, U., Kieffer, S., Salamon, M.: Three-dimensional strain softening modeling of deep longwall coal mine layouts. FLAC Numer. Model. Geomech. 233–239 (2003). https://doi.org/10.1201/9780203883204.ch79

  • Balmer, G.A.: General analytic solution for Mohr envelope. In: Proceedings-American Society for Testing and Materials, pp. 1260–1271 (1952)

    Google Scholar 

  • Bell, F.G., Donnelly, L.J.: Mining and its Impact on the Environment, p. 547. Taylor & Francis (2006). https://doi.org/10.2113/gseegeosci.13.3.270

  • Bieniawski, Z.T.: Rock mechanics design in mining and tunneling. Balkema. (1984)

    Google Scholar 

  • Bräuner, G.: Subsidence due to underground mining: theory and practices in predicting surface deformation, US Bureau of Mines, p. 8571 (1973). https://doi.org/10.1016/0148-9062(74)91643-x

  • British Standard.: Code of practice for site investigation, p. 147 (1981)

    Google Scholar 

  • Deere, D.: Geological considerations. Rock mechanics in engineering practice, pp. 1–20 (1968)

    Google Scholar 

  • Derbin, Y., Walker, J., Wanatowski, D., Marshall, A.: Issues related to goaf modeling. In: Proceedings of the 19th Southeast Asian Geotechnical Conference & 2nd AGSSEA Conference, pp. 1015–1021 (2016)

    Google Scholar 

  • Derbin, Y., Walker, J., Wanatowski., Marshall, A.: Implementation of advanced constitutive models for the prediction of surface subsidence after underground mineral extraction. (Expected to be published) (2018)

    Google Scholar 

  • Gens, A., Potts, D.: Critical state models in computational geomechanics. Eng. Comput. 5, 178–197 (1988). https://doi.org/10.1016/0148-9062(89)90209-x

    Article  Google Scholar 

  • Hansen, T.H.: Rock properties. Norwegian Rock and Soil Assoc. 5, 41–44 (1988)

    Google Scholar 

  • Herrero, C., Munoz, A., Catalina, J.C., Hadj-Hassen, F., Kuchenbecker, R., Spreckels, V., Juzwa, J., Bennet, S., Purvis, M., Bigby, D., Moore, D.: Prediction and monitoring of subsidence hazards above coal mines (Presidence), p. 138. Directorate-General for Research and Innovation, Luxembourg (2012)

    Google Scholar 

  • Hoek, E., Brown, E.T.: Underground excavations in rock, p. 527. Institution of Mining and Metallurgy, London (1980)

    Google Scholar 

  • Hoek, E., Brown, E.T.: Practical estimates of rock mass strength. Int. J. Rock Mech. Min. Sci. 34, 1165–1186 (1997). https://doi.org/10.1016/s0148-9062(97)00305-7

    Article  Google Scholar 

  • Hoek, E., Diederichs, M.S.: Empirical estimation of rock mass modulus. Int. J. Rock Mech. Min. Sci. 43, 203–215 (2006). https://doi.org/10.1016/j.ijrmms.2005.06.005

    Article  Google Scholar 

  • Hoek, E., Wood, D., Shah, S.: A modifed Hoek-Brown failure criterion for jointed rock masses. In: Rock Characterization: ISRM Symposium, Eurock’92, Chester, UK, 14–17 September 1992, pp. 209–214 (1992)

    Google Scholar 

  • Hudson, J.A., Harrison, J.P.: Engineering rock mechanics: an introduction to the principles, p. 444, Elsevier (2000). https://doi.org/10.1115/1.1451165

  • Indraratna, B., Salim, W.: Modelling of particle breakage of coarse aggregates incorporating strength and dilatancy. Proc. Inst. Civil Eng. London 155(4), 243–252 (2002). https://doi.org/10.1680/geng.155.4.243.38691

    Article  Google Scholar 

  • ISRM: Commission on standardisation laboratory and field results. Suggested methods for determining hardness and abrasiveness of rocks. Int. J. Rock Mech. Min. Geomech. Abstr. 15, 89–97 (1988)

    Google Scholar 

  • Lama, R., Vutukuri, V.: Handbook on mechanical properties of rocks-testing techniques and results. 3 (1978)

    Google Scholar 

  • Lloyd, P., Mohammad, N., Reddish, D.: Surface subsidence prediction techniques for UK coalfields-an innovative numerical modelling approach. In: Proceeding of the 15th Mining Congress of Turkey, Ankara, pp. 6–9 (1997)

    Google Scholar 

  • Mukherjee, C., Sheorey, P.R., Sharma, K.G.: Numerical simulation of caved goaf behaviour in longwall workings. Int. J. Rock Mech. Min. Sci. Geomech. 31, 35–45 (1994). https://doi.org/10.1016/0148-9062(94)91292-0

    Article  Google Scholar 

  • Najafi, M., Jalali, S.M.E., Khalokakaie, R.: Thermal–mechanical–numerical analysis of stress distribution in the vicinity of underground coal gasification (UCG) panels. Int. J. Coal Geol. 134–135, 1–16 (2014). https://doi.org/10.1016/j.coal.2014.09.014

    Article  Google Scholar 

  • NCB.: National Coal Board. Subsidence Engineers’ Handbook, p. 111. Mining Department, London (1975)

    Google Scholar 

  • Palmström, A.: A Rock Mass Characterization System for Rock Engineering Purpose, p. 381. University of Oslo (1995)

    Google Scholar 

  • Palmström, A., Singh, R.: The deformation modulus of rock masses—comparisons between in situ tests and indirect estimates. Tunn. Undergr. Space Technol. 16, 115–131 (2001). https://doi.org/10.1016/s0886-7798(01)00038-4

    Article  Google Scholar 

  • Pourhosseini, O., Shabanimashcool, M.: Development of an elasto-plastic constitutive model for intact rocks. Int. J. Rock Mech. Min. Sci. 66, 1–12 (2014). https://doi.org/10.1016/j.ijrmms.2013.11.010

    Article  Google Scholar 

  • Salamon, M.: Mechanism of caving in longwall coal mining. In: Rock Mechanics Contributions and Challenges: Proceedings of the 31st US Symposium, pp. 161–168. Golden, Colorado (1990)

    Google Scholar 

  • Salamon, M.: Rockburst hazard and the fight for its alleviation in South African gold mines. Rockbursts: prediction and control, pp. 11–36, IMM, London (1983). https://doi.org/10.1016/0148-9062(84)90579-5

  • Shtumpf, G.G.: Mechanical properties of rocks of the Kuznetsk basin and regularities of their change. Phys. Chem. Probl. Min. 4, 43–51 (1994). (in Russian)

    Google Scholar 

  • Singh, G.S.P., Singh, U.K.: Assessment of goaf characteristics and compaction in longwall caving. Min. Technol. 120, 222–232 (2011). https://doi.org/10.1179/1743286311y.0000000010

    Article  Google Scholar 

  • Wilson, A.H.: The stability of underground workings in the soft rocks of the coal measures. Int. J. Min. Eng. 1, 91–187 (1983). https://doi.org/10.1007/bf00880785

    Article  Google Scholar 

  • Wilson, A.H.: Pillar stability in longwall mining. In: Wilson, A.H. (ed.) State-of-the-Art of Ground Control in Longwall Mining and Mining Subsidence, pp. 85–95 (1984). https://doi.org/10.1016/0148-9062(84)90575-8

  • Xiao, Y., Sun, Y., Liu, H., Yin, F.: Critical state behaviors of a coarse granular soil under generalized stress conditions. Granular Matter 18(2), 17 (2016). https://doi.org/10.1007/s10035-016-0623-3

    Article  Google Scholar 

  • Xu, N., Kulatilake, P.H.S.W., Tian, H., Wu, X., Nan, Y., Wei, T.: Surface subsidence prediction for the Wutong mine using a 3-D finite difference method. Comput. Geotech. 48, 134–145 (2013). https://doi.org/10.1016/j.compgeo.2012.09.014

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the open fund SKLGDUEK1512 of the China University of Mining and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. G. Derbin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Derbin, Y.G., Walker, J., Wanatowski, D., Marshall, A.M. (2019). Numerical Simulation of Surface Subsidence After the Collapse of a Mine. In: Sevi, A., Neves, J., Zhao, H. (eds) Enhancements in Applied Geomechanics, Mining, and Excavation Simulation and Analysis. GeoChina 2018. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-319-95645-9_9

Download citation

Publish with us

Policies and ethics