Skip to main content

A Non-parametric Cumulative Sum Approach for Online Diagnostics of Cyber Attacks to Nuclear Power Plants

  • Chapter
  • First Online:
Resilience of Cyber-Physical Systems

Abstract

Both stochastic failures and cyber attacks can compromise the correct functionality of Cyber-Physical Systems (CPSs). Cyber attacks manifest themselves in the physical system and, can be misclassified as component failures, leading to wrong control actions and maintenance strategies. In this chapter, we illustrate the use of a nonparametric cumulative sum (NP-CUSUM) approach for online diagnostics of cyber attacks to CPSs. This allows for (i) promptly recognizing cyber attacks by distinguishing them from component failures, and (ii) guiding decisions for the CPSs recovery from anomalous conditions. We apply the approach to the Advanced Lead-cooled Fast Reactor European Demonstrator (ALFRED) and its digital Instrumentation and Control (I&C) system. For this, an object-oriented model previously developed is embedded within a Monte Carlo (MC) engine that allows injecting into the I&C system both components (stochastic) failures (such as sensor bias, drift, wider noise and freezing) and cyber attacks (such as Denial of Service (DoS) attacks mimicking component failures).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CPS:

Cyber-Physical System

NP-CUSUM:

Non-Parametric CUmulative SUM

ALFRED:

Advanced Lead-cooled Fast Reactor European Demonstrator

I&C:

Instrumentation and Control

MC:

Monte Carlo

NPP:

Nuclear Power Plant

PI:

Proportional-Integral

DoS:

Denial of Service

PID:

Proportional-Integral-Derivative

FDI:

False Data Injection

SG:

Steam Generator

FA:

Fuel Assembly

CR:

Control Rod

SISO:

Single Input Single Output

DAC:

Digital-to-Analog Converter

LSB:

Least Significant Bit

P Th :

Thermal power

h CR :

Height of control rods

T L,hot :

Coolant core outlet temperature

T L,cold :

Coolant SG outlet temperature

Г :

Coolant mass flow rate

T feed :

Feedwater SG inlet temperature

T steam :

Steam SG outlet temperature

p SG :

SG pressure

G water :

Feedwater mass flow rate

G att :

Attemperator mass flow rate

kv :

Turbine admission valve coefficient

P Mech :

Mechanical power

K p,j :

Proportional gain value of j-th PI

K i,j :

Integral gain value of j-th PI

t :

Time

t R :

Accident time

t M :

Mission time

Δt :

Sensor measuring time interval

y :

Variable (safety parameter)

y ref :

Reference value of controller set point value of y

y real(t):

Real value of y

y sensor(t):

Sensor measurement

y feed(t):

Measurement received by the computing (feeding) subsystem

y monitor(t):

Measurement received by the monitoring subsystem

Y(t):

Redundant channel measure, Y = y feed and y monitor

δ y(t):

Sensor measuring error

q y(t):

Converter quantization error

a :

Accidental scenario

b :

Bias factor

c :

Drift factor

S Y(t):

Score function-based statistic of the collected Y(t), S Y(t) = \( {S}_y^{feed}(t) \) and \( {S}_y^{monitor}(t) \)

h y :

Positive threshold

τ Y :

Time to alarm, τ Y = \( {\tau}_y^{feed} \) and \( {\tau}_y^{monitor} \)

Δτ y :

Delay difference between \( {\tau}_y^{feed} \) and \( {\tau}_y^{monitor} \)

\( {\Gamma}_y^{ref} \) :

Reference delay difference

c y :

NP-CUSUM parameter

ε y :

NP-CUSUM parameter

ω y :

NP-CUSUM positive weight

g Y :

Score function

Δg Y :

Score function difference value

μ Y :

Pre-change mean value of Y

θ Y :

Post-change mean value of Y

\( {\widehat{\theta}}_Y(t) \) :

On-line estimate of θ Y

\( {\mu}_{\Delta {g}_Y} \) :

Known pre-change mean value of Δg Y

\( {\theta}_{\Delta {g}_Y} \) :

Unknown post-change mean value of Δg Y

\( {\alpha}_y^h \) :

False alarm rate

\( {\beta}_y^h \) :

Missed alarm rate

\( \gamma \left({\Gamma}_{T_{L, cold}}^{ref}\right) \) :

Misclassification rate with respect to \( {\Gamma}_y^{ref} \)

References

  1. Aldemir T, Guarro S, Mandelli D, Kirschenbaum J, Mangan LA, Bucci P et al (2010) Probabilistic risk assessment modeling of digital instrumentation and control systems using two dynamic methodologies. Reliab Eng Syst Saf 95(10):1011–1039

    Article  Google Scholar 

  2. Alur R (2015) Principles of cyber-physical systems. MIT Press, Cambridge, MA

    Google Scholar 

  3. Authen S, Holmberg JE (2012) Reliability analysis of digital systems in a probabilistic risk analysis for nuclear power plants. Nucl Eng Technol 44(5):471–482

    Article  Google Scholar 

  4. Aven T (2009) Identification of safety and security critical systems and activities. Reliab Eng Syst Saf 94(2):404–411

    Article  Google Scholar 

  5. Boskvic JD, Mehra RK (2002) Stable adaptive multiple model-based control design for accommodation of sensor failures. In: American control conference, 2002. Proceedings of the 2002, IEEE, vol 3, pp 2046–2051

    Google Scholar 

  6. Bradley JM, Atkins EM (2015) Optimization and control of cyber-physical vehicle systems. Sensors 15(9):23020–23049

    Article  Google Scholar 

  7. Carl G, Kesidis G, Brooks RR, Rai S (2006) Denial-of-service attack-detection techniques. IEEE Internet Comput 10(1):82–89

    Article  Google Scholar 

  8. Debar H, Dacier M, Wespi A (1999) Towards a taxonomy of intrusion-detection systems. Comput Netw 31(8):805–822

    Article  Google Scholar 

  9. Di Maio F, Baraldi P, Zio E, Seraoui R (2013) Fault detection in nuclear power plants components by a combination of statistical methods. IEEE Trans Reliab 62(4):833–845

    Article  Google Scholar 

  10. Duda RO, Hart PE, Stork DG (1973) Pattern classification, vol 2. Wiley, New York, pp 526–528

    MATH  Google Scholar 

  11. DYMOLA (2015) Dymola (Version 2015). France: Dassault Systèmes. Retrieved from http://www.3ds.com/products-services/catia/products/dymola

  12. Eames DP, Moffett J (1999) The integration of safety and security requirements. In: International conference on computer safety, reliability, and security. Springer, Berlin/Heidelberg, pp 468–480

    Chapter  Google Scholar 

  13. Elhag S, Fernández A, Bawakid A, Alshomrani S, Herrera F (2015) On the combination of genetic fuzzy systems and pairwise learning for improving detection rates on intrusion detection systems. Expert Syst Appl 42(1):193–202

    Article  Google Scholar 

  14. Fang Y, Sansavini G (2017) Optimizing power system investments and resilience against attacks. Reliab Eng Syst Saf 159:161–173

    Article  Google Scholar 

  15. Fritzson P (2010) Principles of object-oriented modeling and simulation with Modelica 2.1. Wiley, Hoboken

    Book  Google Scholar 

  16. Frogheri M, Alemberti A, Mansani L (2015) The lead fast reactor: demonstrator (ALFRED) and ELFR design. In: Fast reactors and related fuel cycles: safe technologies and sustainable scenarios (FR13). V. 1. Proceedings of an international conference

    Google Scholar 

  17. Grasso G, Petrovich C, Mikityuk K, Mattioli D, Manni F, Gugiu D (2013) Demonstrating the effectiveness of the European LFR concept: the ALFRED core design. In: Proceedings of the IAEA international conference on fast reactors and related fuel cycles: safe technologies and sustainable scenarios

    Google Scholar 

  18. Gray R, Neuhoff D (1998) Quantization. IEEE Trans Inf Theory 44(6):2325–2383

    Article  MATH  Google Scholar 

  19. Hines JW, Garvey DR (2006) Development and application of fault detectability performance metrics for instrument calibration verification and anomaly detection. J Pattern Recogn Res 1(1):2–15

    Article  Google Scholar 

  20. Hu X, Xu M, Xu S, Zhao P (2017) Multiple cyber attacks against a target with observation errors and dependent outcomes: characterization and optimization. Reliab Eng Syst Saf 159:119–133

    Article  Google Scholar 

  21. IAEA (2009) Implementing digital instrumentation and control systems in the modernization of nuclear power plants. Technical report NP-T-1.4. IAEA

    Google Scholar 

  22. Jockenhövel-Barttfeld M, Taurines A, Hessler C (2016) Quantification of application software failures of digital I&C in probabilistic safety analyses. In: 13th international conference on probabilistic safety assessment and management, Seoul, Korea

    Google Scholar 

  23. Khaitan SK, McCalley JD (2015) Design techniques and applications of cyberphysical systems: a survey. IEEE Syst J 9(2):350–365

    Article  Google Scholar 

  24. Kim KD, Kumar PR (2012) Cyber–physical systems: a perspective at the centennial. Proc IEEE 100(Special Centennial Issue):1287–1308

    Article  Google Scholar 

  25. Kornecki AJ, Liu M (2013) Fault tree analysis for safety/security verification in aviation software. Electronics 2(1):41–56

    Article  Google Scholar 

  26. Kriaa S, Pietre-Cambacedes L, Bouissou M, Halgand Y (2015) A survey of approaches combining safety and security for industrial control systems. Reliab Eng Syst Saf 139:156–178

    Article  Google Scholar 

  27. Lee EA (2008) Cyber physical systems: design challenges. In: Object oriented real-time distributed computing (ISORC), 2008 11th IEEE international symposium on, IEEE, pp 363–369

    Google Scholar 

  28. Levine WS (ed) (1996) The control handbook. CRC Press, Boca Raton

    MATH  Google Scholar 

  29. Li J, Huang X (2016) Cyber attack detection of I&C systems in NPPS based on physical process data. In: 2016 24th international conference on nuclear engineering, American Society of Mechanical Engineers, pp V002T07A011–V002T07A011

    Google Scholar 

  30. Liang G, Zhao J, Luo F, Weller SR, Dong ZY (2017) A review of false data injection attacks against modern power systems. IEEE Trans Smart Grid 8(4):1630–1638

    Article  Google Scholar 

  31. Machado, R. C., Boccardo, D. R., De Sá, V. G. P., & Szwarcfiter, J. L. (2016). Software control and intellectual property protection in cyber-physical systems. EURASIP J Inf Secur, 2016(1), 8

    Google Scholar 

  32. McNelles P, Zeng ZC, Renganathan G, Lamarre G, Akl Y, Lu L (2016) A comparison of fault trees and the dynamic flowgraph methodology for the analysis of FPGA-based safety systems part 1: reactor trip logic loop reliability analysis. Reliab Eng Syst Saf 153:135–150

    Article  Google Scholar 

  33. Mo Y, Chabukswar R, Sinopoli B (2014) Detecting integrity attacks on SCADA systems. IEEE Trans Control Syst Technol 22(4):1396–1407

    Article  Google Scholar 

  34. Mohammadpourfard M, Sami A, Seifi AR (2017) A statistical unsupervised method against false data injection attacks: a visualization-based approach. Expert Syst Appl 84:242–261

    Article  Google Scholar 

  35. Moteff JD (2012) Critical infrastructure resilience: the evolution of policy and programs and issues for congress. Congressional Research Service, Library of Congress, Washington, DC

    Google Scholar 

  36. Ntalampiras S (2015) Detection of integrity attacks in cyber-physical critical infrastructures using ensemble modeling. IEEE Trans Ind Inf 11(1):104–111

    Article  Google Scholar 

  37. Ntalampiras S (2016) Automatic identification of integrity attacks in cyber-physical systems. Expert Syst Appl 58:164–173

    Article  Google Scholar 

  38. Obama B (2013) Presidential policy directive 21: critical infrastructure security and resilience. The White House, Washington, DC

    Google Scholar 

  39. Page ES (1954) Continuous inspection schemes. Biometrika 41(1/2):100–115

    Article  MathSciNet  MATH  Google Scholar 

  40. Pajic M, Weimer J, Bezzo N, Sokolsky O, Pappas GJ, Lee I (2017) Design and implementation of attack-resilient cyberphysical systems: with a focus on attack-resilient state estimators. IEEE Control Syst 37(2):66–81

    Article  MathSciNet  Google Scholar 

  41. Piètre-Cambacédès L, Bouissou M (2013) Cross-fertilization between safety and security engineering. Reliab Eng Syst Saf 110:110–126

    Article  Google Scholar 

  42. Ponciroli R, Bigoni A, Cammi A, Lorenzi S, Luzzi L (2014) Object-oriented modelling and simulation for the ALFRED dynamics. Prog Nucl Energy 71:15–29

    Article  Google Scholar 

  43. Ponciroli R, Cammi A, Della Bona A, Lorenzi S, Luzzi L (2015) Development of the ALFRED reactor full power mode control system. Prog Nucl Energy 85:428–440

    Article  Google Scholar 

  44. Qiu P, Hawkins D (2003) A nonparametric multivariate cumulative sum procedure for detecting shifts in all directions. J R Stat Soc Ser D Stat 52(2):151–164

    Article  MathSciNet  Google Scholar 

  45. Rahman MS, Mahmud MA, Oo AM, Pota HR (2017) Multi-agent approach for enhancing security of protection schemes in cyber-physical energy systems. IEEE Trans Ind Inf 13(2):436–447

    Article  Google Scholar 

  46. Roberts SW (1959) Control chart tests based on geometric moving averages. Technometrics 1(3):239–250

    Article  Google Scholar 

  47. Shi D, Guo Z, Johansson KH, Shi L (2018) Causality countermeasures for anomaly detection in cyber-physical systems. IEEE Trans Autom Control 63(2):386–401

    Article  MathSciNet  MATH  Google Scholar 

  48. Shin J, Son H, Heo G (2015) Development of a cyber security risk model using Bayesian networks. Reliab Eng Syst Saf 134:208–217

    Article  Google Scholar 

  49. Skogestad S, Postlethwaite I (2007) Multivariable feedback control: analysis and design, vol 2. Wiley, New York, pp 359–368

    MATH  Google Scholar 

  50. Tan R, Nguyen HH, Foo EY, Yau DK, Kalbarczyk Z, Iyer RK, Gooi HB (2017) Modeling and mitigating impact of false data injection attacks on automatic generation control. IEEE Trans Inf Forensics Secur 12(7):1609–1624

    Article  Google Scholar 

  51. Tartakovsky AG, Rozovskii BL, Blažek RB, Kim H (2006a) Detection of intrusions in information systems by sequential change-point methods. Stat Methodol 3(3):252–293

    Article  MathSciNet  MATH  Google Scholar 

  52. Tartakovsky AG, Rozovskii BL, Blazek RB, Kim H (2006b) A novel approach to detection of intrusions in computer networks via adaptive sequential and batch-sequential change-point detection methods. IEEE Trans Signal Process 54(9):3372–3382

    Article  MATH  Google Scholar 

  53. Tartakovsky AG, Polunchenko AS, Sokolov G (2013) Efficient computer network anomaly detection by changepoint detection methods. IEEE J Sel Top Sign Proces 7(1):4–11

    Article  Google Scholar 

  54. Teixeira A, Amin S, Sandberg H, Johansson KH, Sastry SS (2010) Cyber security analysis of state estimators in electric power systems. In: Decision and control (CDC), 2010 49th IEEE conference on, IEEE, pp 5991–5998

    Google Scholar 

  55. Trabelsi Z, Rahmani H (2005) An anti-sniffer based on ARP cache poisoning attack. Inf Syst Secur 13(6):23–36

    Article  Google Scholar 

  56. Wang W, Di Maio F, Zio E (2016) Component-and system-level degradation modeling of digital instrumentation and control systems based on a multi-state physics modeling approach. Ann Nucl Energy 95:135–147

    Article  Google Scholar 

  57. Wang W, Cammi A, Di Maio F, Lorenzi S, Zio E (2017a) A Monte Carlo-based exploration framework for identifying components vulnerable to cyber threats in nuclear power plants. Reliab Eng Syst Saf 175:24–37

    Article  Google Scholar 

  58. Wang W, Di Maio F, Zio E (2017b) Estimation of failure on-demand probability and malfunction rate values in cyber-physical systems of nuclear power plants. In: The 2017 international topical meeting on probabilistic safety assessment and analysis (PSA2017), Pittsburgh, USA, September, 2017, pp 24–28

    Google Scholar 

  59. Wald A (1973) Sequential analysis. Courier Corporation, New York

    MATH  Google Scholar 

  60. Widrow B (1961) Analysis of amplitude-quantized sampled-data systems. Electr Eng 80(6):450–450

    Article  Google Scholar 

  61. Xiang Y, Wang L, Liu N (2017) Coordinated attacks on electric power systems in a cyber-physical environment. Electr Power Syst Res 149:156–168

    Article  Google Scholar 

  62. Xie M, Goh TN, Ranjan P (2002) Some effective control chart procedures for reliability monitoring. Reliab Eng Syst Saf 77(2):143–150

    Article  Google Scholar 

  63. Yuan Y, Zhu Q, Sun F, Wang Q, Başar T (2013) Resilient control of cyber-physical systems against denial-of-service attacks. In: Resilient control systems (ISRCS), 2013 6th international symposium on, IEEE, pp 54–59

    Google Scholar 

  64. Yuan W, Zhao L, Zeng B (2014) Optimal power grid protection through a defender–attacker–defender model. Reliab Eng Syst Saf 121:83–89

    Article  Google Scholar 

  65. Zalewski J, Buckley IA, Czejdo B, Drager S, Kornecki AJ, Subramanian N (2016) A framework for measuring security as a system property in cyberphysical systems. Information 7(2):33

    Article  Google Scholar 

  66. Zargar ST, Joshi J, Tipper D (2013) A survey of defense mechanisms against distributed denial of service (DDoS) flooding attacks. IEEE Commun Surv Tutorials 15(4):2046–2069

    Article  Google Scholar 

  67. Zaytoon J, Lafortune S (2013) Overview of fault diagnosis methods for discrete event systems. Annu Rev Control 37(2):308–320

    Article  Google Scholar 

  68. Zhao X, Chu PS (2010) Bayesian changepoint analysis for extreme events (typhoons, heavy rainfall, and heat waves): an RJMCMC approach. J Clim 23(5):1034–1046

    Article  Google Scholar 

  69. Zio E (2009) Reliability engineering: old problems and new challenges. Reliab Eng Syst Saf 94(2):125–141

    Article  Google Scholar 

  70. Zio E (2016) Challenges in the vulnerability and risk analysis of critical infrastructures. Reliab Eng Syst Saf 152:137–150

    Article  Google Scholar 

  71. Zio E, Di Maio F (2009) Processing dynamic scenarios from a reliability analysis of a nuclear power plant digital instrumentation and control system. Ann Nucl Energy 36(9):1386–1399

    Article  Google Scholar 

  72. Zio E, Zoia A (2009) Parameter identification in degradation modeling by reversible-jump Markov Chain Monte Carlo. IEEE Trans Reliab 58(1):123–131

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to Prof. Antonio Cammi and Dr. Stefano Lorenzi of the Energy Department, Politecnico di Milano, for providing guidance and training on code simulating the ALFRED reactor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Di Maio .

Editor information

Editors and Affiliations

Appendix A: The NP-CUSUM Algorithm

Appendix A: The NP-CUSUM Algorithm

Without loss of generality, let us consider an accidental scenario a simulated over a mission time t M, during which a cyber attack occurs at random time t R (t R < t M). Considering a time interval dt, we can define the pre-attack signal mean value \( {\mu}_Y\left(Y(t)\right)=\sum \limits_tY(t)/t \), t = dt, 2dt, …, t, (t < t R), where Y(t) is the measurement Y of a controlled variable y at time t under normal operation conditions (see Fig. A.1a, for example). Assume that DoS attacks lead to arbitrary and abrupt changes in the distributions of observations, such that the (unknown) post-attack mean value results to be \( {\theta}_Y\left(Y(t)\right)=\sum \limits_tY(t)/\left(t-{t}_R\right) \), t = t R, t R + dt, t R + 2dt, … .

Fig. A.1
figure 20

The NP-CUSUM algorithm: (a) a stream of measurement Y(t) of an accidental scenario in which a cyber attack occurring at time t R; (b) the corresponding NP-CUSUM statistic S Y (t) for diagnosing the cyber attack at the time to alarm τ Y

We define a score function g Y(Y(t)) as:

$$ {g}_Y\left(Y(t)\right)=\sum \limits_t{\omega}_y\cdot \Lambda \left(Y(t)\right)=\sum \limits_t{\omega}_y\cdot \left(\left|Y(t)-{\mu}_Y\right|-{c}_y(t)\right) $$
(A.1)

where ω y is a positive weight that is used for normalizing Λ(Y(t)) and chosen equal to 1/σ Y, where σ Y is the standard deviation of Y(t), t = dt, 2dt, …, and the parameter c y(t) depends on the past t-1 measurements as in Eq. (A.2):

$$ {c}_y(t)={\varepsilon}_y\cdot {\widehat{\theta}}_Y(t) $$
(A.2)

where ε y is a tuning parameter belonging to the interval (0,1) and \( {\widehat{\theta}}_Y(t) \) is an estimate of the unknown mean value θ Y(Y(t)). In practice, it is difficult to estimate \( {\widehat{\theta}}_Y(t) \) on-line. Hence, Eq. (A.1) is simplified in:

$$ \Delta {g}_Y\left(Y(t)\right)={\omega}_y\cdot \left(\left|Y(t)-{\mu}_Y\right|-{c}_y\right) $$
(A.3)

The score function S Y(t) adopted in the NP-CUSUM algorithm is, then, defined as:

$$ {S}_Y(t)=\max \left\{0,{S}_Y\left(t-1\right)+\Delta {g}_Y\left(Y(t)\right)\right\} $$
(A.4)

where, S Y(0) = 0.

In practice, with respect to a stream of measurement Y(t), the NP-CUSUM statistics S Y(t) remain close to zero or slightly positive under normal operation conditions, whereas, it starts drifting and increasing when a cyber attack occurs at time t R and, ends up with exceeding a predefined positive threshold h y (see Fig. A.1b). An alarm can be triggered when S Y(t) reaches h y at the time of alarm:

$$ {\tau}_Y=\min \left\{t\ge 1:{S}_Y(t)\ge {h}_y\right\} $$
(A.5)

The detection delay Y between t R and τ Y depends on the choice of h y. A good diagnostic algorithm is expected to perform with a low False Alarm Rate (FAR) and a small value Y.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, W., Di Maio, F., Zio, E. (2019). A Non-parametric Cumulative Sum Approach for Online Diagnostics of Cyber Attacks to Nuclear Power Plants. In: Flammini, F. (eds) Resilience of Cyber-Physical Systems. Advanced Sciences and Technologies for Security Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-95597-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95597-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95596-4

  • Online ISBN: 978-3-319-95597-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics