Skip to main content

Uncovering the Importance of Selenium in Muscle Disease

  • Chapter
  • First Online:
Selenium

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

A connection between selenium bioavailability and development of muscular disorders both in humans and livestock has been established for a long time. With the development of genomics, the function of several selenoproteins was shown to be involved in muscle activity, including SELENON, which was linked to an inherited form of myopathy. Development of animal models has helped to dissect the physiological dysfunction due to mutation in the SELENON gene; however the molecular activity remains elusive and only recent analysis using both in vivo and in vitro experiment provided hints toward its function in oxidative stress defence and calcium transport control. This review sets out to summarise most recent findings for the importance of selenium in muscle function and the contribution of this information to the design of strategies to cure the diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aachmann FL, Fomenko DE, Soragni A, Gladyshev VN, Dikiy A. Solution structure of selenoprotein W and NMR analysis of its interaction with 14-3-3 proteins. J Biol Chem. 2007;282:37036–44.

    Article  CAS  Google Scholar 

  • Appenzeller-Herzog C, Simmen T. ER-luminal thiol/selenol-mediated regulation of Ca2+ signalling. Biochem Soc Trans. 2016;44:452–9.

    Article  CAS  Google Scholar 

  • Arbogast S, Beuvin M, Fraysse B, Zhou H, Muntoni F, Ferreiro A. Oxidative stress in SEPN1-related myopathy: from pathophysiology to treatment. Ann Neurol. 2009;65:677–86.

    Article  CAS  Google Scholar 

  • Arbogast S, Ferreiro A. Selenoproteins and protection against oxidative stress: selenoprotein N as a novel player at the crossroads of redox signaling and calcium homeostasis. Antioxid Redox Signal. 2010;12:893–904.

    Article  CAS  Google Scholar 

  • Arnér E, Holmgren A. Physiological functions of thioredoxin and thioredoxin reductase. Eur J Biochem. 2000;267:6102–9.

    Article  Google Scholar 

  • Baba-Aissa F, Raeymaekers L, Wuytack F, Dode L, Casteels R. Distribution and isoform diversity of the organellar Ca2+ pumps in the brain. Mol Chem Neuropathol. 1998;33:199–208.

    Article  CAS  Google Scholar 

  • Backman E, Nylander E, Johansson I, Henriksson KG, Tagesson C. Selenium and vitamin E treatment of Duchenne muscular dystrophy: no effect on muscle function. Acta Neurol Scand. 1988;78:429–35.

    Article  CAS  Google Scholar 

  • Backman E, Henriksson KG. Effect of sodium selenite and vitamin E treatment in myotonic dystrophy. J Intern Med. 1990;228:577–81.

    Article  CAS  Google Scholar 

  • Baptista RJ, Bistrian BR, Blackburn GL, Miller DG, Champagne CD, Buchanan L. Suboptimal selenium status in home parenteral nutrition patients with small bowel resections. J Parenter Enter Nutr. 1984;8:542–5.

    Article  CAS  Google Scholar 

  • Beck MA, Shi Q, Morris VC, Levander OA. Rapid genomic evolution of a non-virulent coxsackievirus B3 in selenium-deficient mice results in selection of identical virulent isolates. Nat Med. 1995;1:433–6.

    Article  CAS  Google Scholar 

  • Beck MA, Levander OA, Handy J. Selenium deficiency and viral infection. J Nutr. 2003;133:1463S–7S.

    Article  CAS  Google Scholar 

  • Beck J, Ferrucci L, Sun K, Walston J, Fried LP, Varadhan R, Guralnik JM, Semba RD. Low serum selenium concentrations are associated with poor grip strength among older women living in the community. Biofactors. 2007;29:37–44.

    Article  CAS  Google Scholar 

  • Beytut E, Karatas F, Beytut E. Lambs with white muscle disease and selenium content of soil and meadow hay in the region of Kars, Turkey. Vet J. 2002;163:214–7.

    Article  CAS  Google Scholar 

  • Blais JD, Chin KT, Zito E, Zhang Y, Heldman N, Harding HP, Fass D, Thorpe C, Ron D. A small molecule inhibitor of endoplasmic reticulum oxidation 1 (ERO1) with selectively reversible thiol reactivity. J Biol Chem. 2010;285:20993–1003.

    Article  CAS  Google Scholar 

  • Bor MV, Cevìk C, Uslu I, Güneral F, Düzgün E. Selenium levels and glutathione peroxidase activities in patients with acute myocardial infarction. Acta Cardiol. 1999;54:271–6.

    CAS  PubMed  Google Scholar 

  • Brown MR, Cohen HJ, Lyons JM, Curtis TW, Thunberg B, Cochran WJ, Klish WJ. Proximal muscle weakness and selenium deficiency associated with long term parenteral nutrition. Am J Clin Nutr. 1986;43:549–54.

    Article  CAS  Google Scholar 

  • Burke MP, Opeskin K. Fulminant heart failure due to selenium deficiency cardiomyopathy (Keshan disease). Med Sci Law. 2002;42:10–3.

    Article  Google Scholar 

  • Cagliani R, Fruguglietti ME, Berardinelli A, D’Angelo MG, Prelle A, Riva S, Napoli L, Gorni K, Orcesi S, Lamperti C, Pichiecchio A, Signaroldi E, Tupler R, Magri F, Govoni A, Corti S, Bresolin N, Moggio M, Comi GP. New molecular findings in congenital myopathies due to selenoprotein N gene mutations. J Neurol Sci. 2011;300:107–13.

    Article  CAS  Google Scholar 

  • Castets P, Maugenre S, Gartioux C, Rederstorff M, Krol A, Lescure A, Tajbakhsh S, Allamand V, Guicheney P. Selenoprotein N is dynamically expressed during mouse development and detected early in muscle precursors, BMC Dev. Biol. 2009;9:46.

    Google Scholar 

  • Castets P, Lescure A, Guicheney P, Allamand V. Selenoprotein N in skeletal muscle: from diseases to function. J Mol Med. 2012;90:1095–107.

    Article  CAS  Google Scholar 

  • Chen Y-L, Yang KC, Chang HH, Lee LT, Lu CW, Huang KC. Low serum selenium level is associated with low muscle mass in the community-dwelling elderly. J Am Med Dir Assoc. 2014;15:807–11.

    Article  Google Scholar 

  • Clarke NF, Kidson W, Quijano-Roy S, Estournet B, Ferreiro A, Guicheney P, Manson JI, Kornberg AJ, Shield LK, North KN. SEPN1: associated with congenital fiber-type disproportion and insulin resistance. Ann Neurol. 2006;59:546–52.

    Article  CAS  Google Scholar 

  • Combs GF Jr, Cantor AH, Scott ML. Effects of dietary polychlorinated biphenyls on vitamin E and selenium nutrition in the chick. Poult Sci. 1975;54:1143–52.

    Article  CAS  Google Scholar 

  • Değer Y, Mert H, Mert N, Yur F, Kozat S, Yörük IH, Sel T. Serum selenium, vitamin E, and sialic acids concentrations in lambs with white muscle disease. Biol Trace Elem Res. 2008;121:39–43.

    Article  Google Scholar 

  • Delesalle C, de Bruijn M, Wilmink S, Vandendriessche H, Mol G, Boshuizen B, Plancke L, Grinwis G. White muscle disease in foals: focus on selenium soil content. A case series. BMC Vet Res. 2017;13:121.

    Article  Google Scholar 

  • Deniziak M, Thisse C, Rederstorff M, Hindelang C, Thisse B, Lescure A. Loss of selenoprotein N function causes disruption of muscle architecture in the zebrafish embryo. Exp Cell Res. 2007;313:156–67.

    Article  CAS  Google Scholar 

  • Dentice M, Marsili A, Ambrosio R, Guardiola O, Sibilio A, Paik JH, Minchiotti G, DePinho RA, Fenzi G, Larsen PR, Salvatore D. The FoxO3/type 2 deiodinase pathway is required for normal mouse myogenesis and muscle regeneration. J Clin Invest. 2010;120:4021–30.

    Article  CAS  Google Scholar 

  • Dentice M, Ambrosio R, Damiano V, Sibilio A, Luongo C, Guardiola O, Yennek S, Zordan P, Minchiotti G, Colao A, Marsili A, Brunelli S, Del Vecchio L, Larsen PR, Tajbakhsh S, Salvatore D. Intracellular inactivation of thyroid hormone is a survival mechanism for muscle stem cell proliferation and lineage progression. Cell Metab. 2014;20:1038–48.

    Article  CAS  Google Scholar 

  • Dikiy A, Novoselov SV, Fomenko DE, Sengupta A, Carlson BA, Cerny RL, Ginalski K, Grishin NV, Hatfield DL, Gladyshev VN. SelT, SelW, SelH, and Rdx12: genomics and molecular insights into the functions of selenoproteins of a novel thioredoxin-like family. Biochemistry. 2007;46:6871–82.

    Article  CAS  Google Scholar 

  • Dirksen RT, Avila G. Altered ryanodine receptor function in central core disease: leaky or uncoupled ca(2+) release channels? Trends Cardiovasc Med. 2002;12:189–97.

    Article  CAS  Google Scholar 

  • Dowling JJ, Arbogast S, Hur J, Nelson DD, McEvoy A, Waugh T, Marty I, Lunardi J, Brooks SV, Kuwada JY, Ferreiro A. Oxidative stress and successful antioxidant treatment in models of RYR1-related myopathy. Brain. 2012;135:1115–27.

    Article  Google Scholar 

  • Ducreux S, Zorzato F, Ferreiro A, Jungbluth H, Muntoni F, Monnier N, Müller CR, Treves S. Functional properties of ryanodine receptors carrying three amino acid substitutions identified in patients affected by multi-minicore disease and central core disease, expressed in immortalized lymphocytes. Biochem J. 2006;395:259–66.

    Article  CAS  Google Scholar 

  • Ferreiro A, Quijano-Roy S, Pichereau C, Moghadaszadeh B, Goemans N, Bönnemann C, Jungbluth H, Straub V, Villanova M, Leroy JP, Romero NB, Martin JJ, Muntoni F, Voit T, Estournet B, Richard P, Fardeau M, Guicheney P. Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet. 2002a;71:739–49.

    Article  Google Scholar 

  • Ferreiro A, Monnier N, Romero NB, Leroy JP, Bönnemann C, Haenggeli CA, Straub V, Voss WD, Nivoche Y, Jungbluth H, Lemainque A, Voit T, Lunardi J, Fardeau M, Guicheney P. A recessive form of central core disease, transiently presenting as multi-minicore disease, is associated with a homozygous mutation in the ryanodine receptor type 1 gene. Ann Neurol. 2002b;51:750–9.

    Article  CAS  Google Scholar 

  • Ferreiro A, Ceuterick-de Groote C, Marks JJ, Goemans N, Schreiber G, Hanefeld F, Fardeau M, Martin JJ, Goebel HH, Richard P, Guicheney P, Bönnemann CG. Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol. 2004;55:676–86.

    Article  CAS  Google Scholar 

  • Fujihara T, Orden EA. The effect of dietary vitamin E level on selenium status in rats. J Anim Physiol Anim Nutr. 2014;98:921–7.

    Article  CAS  Google Scholar 

  • Gamstorp I, Gustavson KH, Hellström O, Nordgren B. A trial of selenium and vitamin E in boys with muscular dystrophy. J Child Neurol. 1986;1:211–4.

    Article  CAS  Google Scholar 

  • Ghany Hefnawy El A, Tortora-Perez JL. The importance of selenium and the effects of its deficiency in animal health. Small Rumin Res. 2010;89:185.

    Article  Google Scholar 

  • Gross E, Kastner DB, Kaiser CA, Fass D. Structure of Ero1p, source of disulfide bonds for oxidative protein folding in the cell. Cell. 2004;117:601–10.

    Article  CAS  Google Scholar 

  • Gu BQ. Pathology of Keshan disease. A comprehensive review. Chin Med J. 1983;96:251–61.

    CAS  PubMed  Google Scholar 

  • Guglielmi V, Vattemi G, Gualandi F, Voermans NC, Marini M, Scotton C, Pegoraro E, Oosterhof A, Kósa M, Zádor E, Valente EM, De Grandis D, Neri M, Codemo V, Novelli A, van Kuppevelt TH, Dallapiccola B, van Engelen BG, Ferlini A, Tomelleri G. SERCA1 protein expression in muscle of patients with Brody disease and Brody syndrome and in cultured human muscle fibers. Mol Genet Metab. 2013;110:162–9.

    Article  CAS  Google Scholar 

  • Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell. 2003;11:619–33.

    Article  CAS  Google Scholar 

  • Haynes CM, Titus EA, Cooper AA. Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell. 2004;15:767–76.

    Article  CAS  Google Scholar 

  • Huang JQ, Li DL, Zhao H, Sun LH, Xia XJ, Wang KN, Luo X, Lei XG. The selenium deficiency disease exudative diathesis in chicks is associated with downregulation of seven common selenoprotein genes in liver and muscle. J Nutr. 2011;141:1605–10.

    Article  CAS  Google Scholar 

  • Huang JQ, Ren FZ, Jiang YY, Xiao C, Lei XG. Selenoproteins protect against avian nutritional muscular dystrophy by metabolizing peroxides and regulating redox/apoptotic signaling. Free Radic Biol Med. 2015;83:129–38.

    Article  CAS  Google Scholar 

  • Jackson MJ, Coakley J, Stokes M, Edwards RH, Oster O. Selenium metabolism and supplementation in patients with muscular dystrophy. Neurology. 1989;39:655–9.

    Article  CAS  Google Scholar 

  • Jeon YH, Park YH, Lee JH, Hong JH, Kim IY. Selenoprotein W enhances skeletal muscle differentiation by inhibiting TAZ binding to 14-3-3 protein. Biochim Biophys Acta. 2014;1843:1356–64.

    Article  CAS  Google Scholar 

  • Jeon YH, Ko KY, Lee JH, Park KJ, Jang JK, Kim IY. Identification of a redox-modulatory interaction between selenoprotein W and 14-3-3 protein. Biochim Biophys Acta. 2016;1863:10–8.

    Article  CAS  Google Scholar 

  • Jurynec MJ, Xia R, Mackrill JJ, Gunther D, Crawford T, Flanigan KM, Abramson JJ, Howard MT, Grunwald DJ. Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc Natl Acad Sci U S A. 2008;105:12485–90.

    Article  CAS  Google Scholar 

  • Kelly DA, Coe AW, Shenkin A, Lake BD, Walker-Smith JA, et al. Symptomatic selenium deficiency in a child on home parenteral nutrition. J Pediatr Gastroenterol Nutr. 1988;7:783–6.

    Article  CAS  Google Scholar 

  • Kim H, Zhang H, Meng D, Russell G, Lee JN, Ye J, et al. UAS domain of Ubxd8 and FAF1 polymerizes upon interaction with long-chain unsaturated fatty acids. J Lip Res. 2013;54:2144–52.

    Article  CAS  Google Scholar 

  • Lamandé SR, Bateman JF. Procollagen folding and assembly: the role of endoplasmic reticulum enzymes and molecular chaperones. Semin Cell Dev Biol. 1999;10:455–64.

    Article  Google Scholar 

  • Lanner JT, Georgiou DK, Joshi AD, Hamilton SL. Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol. 2010;2:a003996.

    Article  CAS  Google Scholar 

  • Lauretani F, Semba RD, Bandinelli S, Ray AL, Guralnik JM, Ferrucci L. Association of low plasma selenium concentrations with poor muscle strength in older community-dwelling adults: the InCHIANTI study. Am J Clin Nutr. 2007;86:347–52.

    Article  CAS  Google Scholar 

  • Lescure A, Gautheret D, Carbon P, Krol A. Novel selenoproteins identified in silico and in vivo by using a conserved RNA structural motif. J Biol Chem. 1999;274:38147–54.

    Article  CAS  Google Scholar 

  • Lescure A, Briens M, Ferreiro A. What do we know about selenium contributions to muscle physiology? In: Hatfield D, Schweizer U, Tsuji PA, Gladyshev V, editors. Selenium, its molecular biology and role in human health. 4th ed. New York: Springer; 2016. p. 475–86.

    Google Scholar 

  • Li Y, Camacho P. Ca2+−dependent redox modulation of SERCA 2b by ERp57. J Cell Biol. 2004;164:35–46.

    Article  CAS  Google Scholar 

  • Liu J, Rozovsky S. Membrane-bound selenoproteins. Antioxid Redox Signal. 2015;23:795–813.

    Article  CAS  Google Scholar 

  • Manar MJ, MacPherson GD, Mcardle F, Jackson MJ, Hart CA. Selenium status, kwashiorkor and congestive heart failure. Acta Paediatr. 2001;90:950–2.

    Article  CAS  Google Scholar 

  • Marino M, Stoilova T, Giorgi C, Bachi A, Cattaneo A, Auricchio A, Pinton P, Zito E. SEPN1, an endoplasmic reticulum-localized selenoprotein linked to skeletal muscle pathology, counteracts hyperoxidation by means of redox-regulating SERCA2 pump activity. Hum Mol Genet. 2015;24:1843–55.

    Article  CAS  Google Scholar 

  • Marsili A, Larsen PR, Zavacki AM. Tissue-specific regulation of thyroid status by Selenodeiodinases. In: Hatfield D, Schweizer U, Tsuji PA, Gladyshev V, editors. Selenium, its molecular biology and role in human health. 4th ed. New York: Springer; 2016. p. 487–98.

    Google Scholar 

  • Moghadaszadeh B, Petit N, Jaillard C, Brockington M, Quijano Roy S, Merlini L, Romero N, Estournet B, Desguerre I, Chaigne D, Muntoni F, Topaloglu H, Guicheney P. Mutations in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet. 2001;29:17–8.

    Article  CAS  Google Scholar 

  • Moghadaszadeh B, Rider BE, Lawlor MW, Childers MK, Grange RW, Gupta K, Boukedes SS, Owen CA, Beggs AH. Selenoprotein N deficiency in mice is associated with abnormal lung development. FASEB J. 2013;27:1585–99.

    Article  CAS  Google Scholar 

  • Noto Y. Ascorbic acid and Charcot-Marie-tooth disease. Brain Nerve. 2015;67:1241–6.

    PubMed  Google Scholar 

  • Oldfield JE. A brief history of selenium research: from alkali disease to prostate cancer (from poison to prevention). Am Soc Anim Sci. 2002;11:1–3.

    Google Scholar 

  • Orndahl C, Grimby G, Grimby A, Johansson G, Wilhelmsen L. Functional deterioration and selenium-vitamin E treatment in myotonic dystrophy. A placebo-controlled study. J Intern Med. 1994;235:205–10.

    Article  CAS  Google Scholar 

  • Padayatty SJ, Sun H, Wang Y, Riordan HD, Hewitt SM, Katz A, Wesley RA, Levine M. Vitamin C pharmacokinetics: implications for oral and intravenous use. Ann Intern Med. 2004;140:533–7.

    Article  CAS  Google Scholar 

  • Passage E, Norreel JC, Noack-Fraissignes P, Sanguedolce V, Pizant J, Thirion X, Robaglia-Schlupp A, Pellissier JF, Fontés M. Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-tooth disease. Nat Med. 2004;10:396–401.

    Article  CAS  Google Scholar 

  • Petit N, Lescure A, Rederstorff M, Krol A, Moghadaszadeh B, Wewer UM, Guicheney P. Selenoprotein N: an endoplasmic reticulum glycoprotein with an early developmental expression pattern. Hum Mol Genet. 2003;12:1045–53.

    Article  CAS  Google Scholar 

  • Pitts MW, Hoffmann PR. Endoplasmic reticulum-resident selenoproteins as regulators of calcium signaling and homeostasis. Cell Calcium. 2017;70:S0143–4160.

    PubMed  Google Scholar 

  • Powers SK, Nelson WB, Hudson MB. Exercise-induced oxidative stress in humans: cause and consequences. Free Radic Biol Med. 2011;51:942–50.

    Article  CAS  Google Scholar 

  • Pozzer D, Favellato M, Bolis M, Invernizzi RW, Solagna F, Blaauw B, Zito E. Endoplasmic reticulum oxidative stress triggers tgf-beta-dependent muscle dysfunction by accelerating ascorbic acid turnover. Sci Rep. 2017;7:40993.

    Article  CAS  Google Scholar 

  • Rayavarapu S, Coley W, Nagaraju K. Endoplasmic reticulum stress in skeletal muscle homeostasis and disease. Curr Rheumatol Rep. 2012;14:238–43.

    Article  CAS  Google Scholar 

  • Rederstorff M, Castets P, Arbogast S, Lainé J, Vassilopoulos S, Beuvin M, Dubourg O, Vignaud A, Ferry A, Krol A, Allamand V, Guicheney P, Ferreiro A, Lescure A. Increased muscle stress-sensitivity induced by selenoprotein N inactivation in mouse: a mammalian model for SEPN1-related myopathy. PLoS One. 2011;6:e23094.

    Article  CAS  Google Scholar 

  • Reid MB, Stokić DS, Koch SM, Khawli FA, Leis AA. N-acetylcysteine inhibits muscle fatigue in humans. J Clin Invest. 1994;94:2468–74.

    Article  CAS  Google Scholar 

  • Rezvani K. UBXD proteins: a family of proteins with diverse functions in cancer. Int J Mol Sci. 2016;17:1724.

    Article  Google Scholar 

  • Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8:519–29.

    Article  CAS  Google Scholar 

  • Schoenmakers E, Agostini M, Mitchell C, Schoenmakers N, Papp L, Rajanayagam O, Padidela R, Ceron-Gutierrez L, Doffinger R, Prevosto C, Luan J, Montano S, Lu J, Castanet M, Clemons N, Groeneveld M, Castets P, Karbaschi M, Aitken S, Dixon A, Williams J, Campi I, Blount M, Burton H, Muntoni F, O’Donovan D, Dean A, Warren A, Brierley C, Baguley D, Guicheney P, Fitzgerald R, Coles A, Gaston H, Todd P, Holmgren A, Khanna KK, Cooke M, Semple R, Halsall D, Wareham N, Schwabe J, Grasso L, Beck-Peccoz P, Ogunko A, Dattani M, Gurnell M, Chatterjee K. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest. 2010;120:4220–35.

    Article  CAS  Google Scholar 

  • Schoenmakers E, Schoenmakers N, Chatterjee K. Mutations in humans that adversely affect the selenoprotein synthesis pathway. In: Hatfield D, Schweizer U, Tsuji PA, Gladyshev V, editors. Selenium, its molecular biology and role in human health. 4th ed. New York: Springer; 2016. p. 523–38.

    Google Scholar 

  • Scoto M, Cirak S, Mein R, Feng L, Manzur AY, Robb S, Childs AM, Quinlivan RM, Roper H, Jones DH, Longman C, Chow G, Pane M, Main M, Hanna MG, Bushby K, Sewry C, Abbs S, Mercuri E, Muntoni F. SEPN1-related myopathies: clinical course in a large cohort of patients. Neurology. 2011;76:2073–8.

    Article  CAS  Google Scholar 

  • Segard BD, Delort F, Bailleux V, Simon S, Leccia E, Gausseres B, Briki F, Vicart P, Batonnet-Pichon S. N-acetyl-L-cysteine prevents stress-induced desmin aggregation in cellular models of desminopathy. PLoS One. 2013;8:e76361.

    Article  CAS  Google Scholar 

  • Sharp BA, Young LG, Van Dreumel AA. Effect of supplemental vitamin E and selenium in high moisture corn diets on the incidence of mulberry heart disease and hepatosis dietetica in pigs. Can J Comp Med. 1972;36:393–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stammers AN, Susser SE, Hamm NC, Hlynsky MW, Kimber DE, Kehler DS, Duhamel TA. The regulation of sarco(endo)plasmic reticulum calcium-ATPases (SERCA). Can J Physiol Pharmacol. 2015;93:843–54.

    Article  CAS  Google Scholar 

  • Streeter RM, Divers TJ, Mittel L, Korn AE, Wakshlag JJ. Selenium deficiency associations with gender, breed, serum vitamin E and creatine kinase, clinical signs and diagnoses in horses of different age groups: a retrospective examination 1996-2011. Equine Vet J Suppl. 2012;43:31–5.

    Article  Google Scholar 

  • Tsai KW, Leung CM, Lo YH, Chen TW, Chan WC, Yu SY, Tu YT, Lam HC, Li SC, Ger LP, Liu WS, Chang HT. Arm selection preference of MicroRNA-193a varies in breast Cancer. Sci Rep. 2016;6:28176.

    Article  CAS  Google Scholar 

  • Thompson JN, Scott ML. Role of selenium in the nutrition of the chick. J Nutr. 1969;97:335–42.

    Article  CAS  Google Scholar 

  • Toyohara H, Nakata T, Touhata K, Hashimoto H, Kinoshita M, Sakaguchi M, Nishikimi M, Yagi K, Wakamatsu Y, Ozato K. Transgenic expression of l-Gulono-γ-lactone oxidase in medaka (Oryzias latipes), a teleost fish that lacks this enzyme necessary for l-ascorbic acid biosynthesis. Biochem Biophys Res Commun. 1996;223:650–3.

    Article  CAS  Google Scholar 

  • Tu BP, Weissman JS. The FAD- and O(2)-dependent reaction cycle of Ero1-mediated oxidative protein folding in the endoplasmic reticulum. Mol Cell. 2002;10:983–94.

    Article  CAS  Google Scholar 

  • van Rij AM, Thomson CD, McKenzie JM, Robinson MF. Selenium deficiency in total parenteral nutrition. Am J Clin Nutr. 1979;32:2076–85.

    Article  Google Scholar 

  • Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6.

    Article  CAS  Google Scholar 

  • Whanger PD. Selenoprotein W: a review. Cell Mol Life Sci. 2000;57:1846–52.

    Article  CAS  Google Scholar 

  • White SH, Johnson SE, Bobel JM, Warren LK. Dietary selenium and prolonged exercise alter gene expression and activity of antioxidant enzymes in equine skeletal muscle. J Anim Sci. 2016;94:2867–78.

    Article  CAS  Google Scholar 

  • Xu L, Eu JP, Meissner G, Stamler JS. Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science. 1998;279:234–7.

    Article  CAS  Google Scholar 

  • Wu J, Ruas JL, Estall JL, Rasbach KA, Choi JH, Ye L, Boström P, Tyra HM, Crawford RW, Campbell KP, Rutkowski DT, Kaufman RJ, Spiegelman BM. The unfolded protein response mediates adaptation to exercise in skeletal muscle through a PGC-1α/ATF6α complex. Cell Metab. 2011;13:160–9.

    Article  CAS  Google Scholar 

  • Yao HD, Wu Q, Zhang ZW, Zhang JL, Li S, Huang JQ, Ren FZ, Xu SW, Wang XL, Lei XG. Gene expression of endoplasmic reticulum resident selenoproteins correlates with apoptosis in various muscles of se-deficient chicks. J Nutr. 2013;143:613–9.

    Article  CAS  Google Scholar 

  • Zhang J, Li J, Zhang Z, Sun B, Wang R, Jiang Z, Li S, Xu S. Ubiquitous expression of selenoprotein N transcripts in chicken tissues and early developmental expression pattern in skeletal muscles. Biol Trace Elem Res. 2012;146:187–91.

    Article  CAS  Google Scholar 

  • Zito E. ERO1: a protein disulfide oxidase and H2O2 producer. Free Radic Biol Med. 2015;83:299–304.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Meyer Foundation to A.L., a Telethon career award (TDEZ00112T), ERC Cariplo (2014-1856) and biomedical science for young scientist Cariplo (2014-1075) to E.Z.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alain Lescure or Ester Zito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lescure, A., Baltzinger, M., Zito, E. (2018). Uncovering the Importance of Selenium in Muscle Disease. In: Michalke, B. (eds) Selenium. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-95390-8_18

Download citation

Publish with us

Policies and ethics