Skip to main content

Traction Force Microscopy for Noninvasive Imaging of Cell Forces

  • Chapter
  • First Online:
Biomechanics in Oncology

Abstract

The forces exerted by cells on their surroundings play an integral role in both physiological processes and disease progression. Traction force microscopy is a noninvasive technique that enables the in vitro imaging and quantification of cell forces. Utilizing expertise from a variety of disciplines, recent developments in traction force microscopy are enhancing the study of cell forces in physiologically relevant model systems, and hold promise for further advancing knowledge in mechanobiology. In this chapter, we discuss the methods, capabilities, and limitations of modern approaches for traction force microscopy, and highlight ongoing efforts and challenges underlying future innovations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vogel V, Sheetz M (2006) Local force and geometry sensing regulate cell functions. Nat Rev Mol Cell Biol 7(4):265–275

    Article  CAS  PubMed  Google Scholar 

  2. Paszek MJ et al (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254

    Article  CAS  PubMed  Google Scholar 

  3. Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9(2):108–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eyckmans J et al (2011) A Hitchhiker’s guide to mechanobiology. Dev Cell 21(1):35–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wirtz D, Konstantopoulos K, Searson PC (2011) The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 11(7):512–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Carey SP et al (2012) Mechanobiology of tumor invasion: engineering meets oncology. Crit Rev Oncol Hematol 83(2):170–183

    Article  PubMed  Google Scholar 

  7. Sadati SM et al (2013) Collective migration and cell jamming. Differentiation 86(3):121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Siedlik MJ, Varner VD, Nelson CM (2016) Pushing, pulling, and squeezing our way to understanding mechanotransduction. Methods 94:4–12

    Article  CAS  PubMed  Google Scholar 

  9. Provenzano PP et al (2008) Collagen density promotes mammary tumor initiation and progression. BMC Med 6(1):11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Levental KR et al (2009) Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139(5):891–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bordeleau F et al (2017) Matrix stiffening promotes a tumor vasculature phenotype. Proc Natl Acad Sci U S A 114(3):492–497

    Article  CAS  PubMed  Google Scholar 

  12. Geiger B, Spatz JP, Bershadsky AD (2009) Environmental sensing through focal adhesions. Nat Rev Mol Cell Biol 10(1):21–33

    Article  CAS  PubMed  Google Scholar 

  13. Lopez JI, Mouw JK, Weaver VM (2008) Biomechanical regulation of cell orientation and fate. Oncogene 27(55):6981–6993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schwartz MA, DeSimone DW (2008) Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol 20(5):551–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fritsch A et al (2010) Are biomechanical changes necessary for tumour progression? Nat Phys 6(10):730–732

    Article  CAS  Google Scholar 

  16. Guilak F et al (2009) Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell 5(1):17–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Collinsworth AM et al (2002) Apparent elastic modulus and hysteresis of skeletal muscle cells throughout differentiation. Am J Physiol Cell Physiol 283(4):C1219–C1227

    Article  CAS  PubMed  Google Scholar 

  18. Gilbert PM et al (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wong VW et al (2011) Pushing back: wound mechanotransduction in repair and regeneration. J Investig Dermatol 131(11):2186–2196

    Article  CAS  PubMed  Google Scholar 

  20. Dupont S et al (2011) Role of YAP/TAZ in mechanotransduction. Nature 474(7350):179–183

    Article  CAS  PubMed  Google Scholar 

  21. Mammoto T, Mammoto A, Ingber DE (2013) Mechanobiology and developmental control. Annu Rev Cell Dev Biol 29:27–61

    Article  CAS  PubMed  Google Scholar 

  22. Kraning-Rush CM, Califano JP, Reinhart-King CA (2012) Cellular traction stresses increase with increasing metastatic potential. PLoS One 7(2):e32572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jansen KA et al (2013) Cells actively stiffen fibrin networks by generating contractile stress. Biophys J 105(10):2240–2251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kutys ML, Chen CS (2016) Forces and mechanotransduction in 3D vascular biology. Curr Opin Cell Biol 42:73–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Song W et al (2016) Dynamic self-organization of microwell-aggregated cellular mixtures. Soft Matter 12(26):5739–5746

    Article  CAS  PubMed  Google Scholar 

  26. Harris AK, Wild P, Stopak D (1980) Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208(4440):177–179

    Article  CAS  PubMed  Google Scholar 

  27. Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J 76(4):2307–2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roca-Cusachs P, Conte V, Trepat X (2017) Quantifying forces in cell biology. Nat Cell Biol 19(7):742–751

    Article  CAS  PubMed  Google Scholar 

  29. Tan JL et al (2003) Cells lying on a bed of microneedles: an approach to isolate mechanical force. Proc Natl Acad Sci U S A 100(4):1484–1489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Grashoff C et al (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466(7303):263–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Schwarz US, Soine JR (2015) Traction force microscopy on soft elastic substrates: a guide to recent computational advances. Biochim Biophys Acta 1853(11 Pt B):3095–3104

    Article  CAS  PubMed  Google Scholar 

  32. Azatov M et al (2016) The actin crosslinking protein palladin modulates force generation and mechanosensitivity of tumor associated fibroblasts. Sci Rep 6:28805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Muhamed I et al (2016) E-cadherin-mediated force transduction signals regulate global cell mechanics. J Cell Sci 129(9):1843–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Plutoni C et al (2016) P-cadherin promotes collective cell migration via a Cdc42-mediated increase in mechanical forces. J Cell Biol 212(2):199–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Valon L et al (2017) Optogenetic control of cellular forces and mechanotransduction. Nat Commun 8:14396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mekhdjian AH et al (2017) Integrin-mediated traction force enhances paxillin molecular associations and adhesion dynamics that increase the invasiveness of tumor cells into a three-dimensional extracellular matrix. Mol Biol Cell 28(11):1467–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sunyer R et al (2016) Collective cell durotaxis emerges from long-range intercellular force transmission. Science 353(6304):1157–1161

    Article  CAS  PubMed  Google Scholar 

  38. Steinwachs J et al (2016) Three-dimensional force microscopy of cells in biopolymer networks. Nat. Methods 13(2):171–176

    CAS  Google Scholar 

  39. Toyjanova J et al (2014) 3D viscoelastic traction force microscopy. Soft Matter 10(40):8095–8106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Soine JR et al (2016) Measuring cellular traction forces on non-planar substrates. Interface Focus 6(5):20160024

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gjorevski N, Nelson CM (2012) Mapping of mechanical strains and stresses around quiescent engineered three-dimensional epithelial tissues. Biophys J 103(1):152–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Toyjanova J et al (2014) High resolution, large deformation 3D traction force microscopy. PLoS One 9(4):e90976

    Article  PubMed  PubMed Central  Google Scholar 

  43. Soine JR et al (2015) Model-based traction force microscopy reveals differential tension in cellular actin bundles. PLoS Comput Biol 11(3):e1004076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Butler JP et al (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. Am J Physiol Cell Physiol 282(3):C595–C605

    Article  CAS  PubMed  Google Scholar 

  45. Schwarz US et al (2002) Calculation of forces at focal adhesions from elastic substrate data: the effect of localized force and the need for regularization. Biophys J 83(3):1380–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kraning-Rush CM et al (2012) Quantifying traction stresses in adherent cells. Methods Cell Biol 110:139–178

    Article  PubMed  Google Scholar 

  47. Hall MS et al (2013) Toward single cell traction microscopy within 3D collagen matrices. Exp Cell Res 319(16):2396–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Polacheck WJ, Chen CS (2016) Measuring cell-generated forces: a guide to the available tools. Nat Methods 13(5):415–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Plotnikov SV et al (2014) High-resolution traction force microscopy. Methods Cell Biol 123:367–394

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pelham RJ, Wang YL (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A 94(25):13661–13665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fang M et al (2014) Collagen as a double-edged sword in tumor progression. Tumor Biol 35(4):2871–2882

    Article  CAS  Google Scholar 

  52. Wang JP, Hielscher A (2017) Fibronectin: how its aberrant expression in tumors may improve therapeutic targeting. J Cancer 8(4):674–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196(4):395–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Legant WR et al (2013) Multidimensional traction force microscopy reveals out-of-plane rotational moments about focal adhesions. Proc Natl Acad Sci U S A 110(3):881–886

    Article  CAS  PubMed  Google Scholar 

  55. Maskarinec SA et al (2009) Quantifying cellular traction forces in three dimensions. Proc Natl Acad Sci U S A 106(52):22108–22113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Franck C et al (2011) Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions. PLoS One 6(3):e17833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pampaloni F, Reynaud EG, Stelzer EHK (2007) The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol 8(10): 839–845

    Article  CAS  PubMed  Google Scholar 

  58. Legant WR et al (2010) Measurement of mechanical tractions exerted by cells in three-dimensional matrices. Nat Methods 7(12):969–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Miller JS et al (2010) Bioactive hydrogels made from step-growth derived PEG-peptide macromers. Biomaterials 31(13):3736–3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mulligan JA et al (2017) Measurement of dynamic cell-induced 3D displacement fields in vitro for traction force optical coherence microscopy. Biomed Opt Express 8(2):1152–1171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Koch TM et al (2012) 3D traction forces in cancer cell invasion. PLoS One 7(3):e33476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Przybyla L et al (2016) Monitoring developmental force distributions in reconstituted embryonic epithelia. Methods 94:101–113

    Article  CAS  PubMed  Google Scholar 

  63. Carey SP et al (2016) Local extracellular matrix alignment directs cellular protrusion dynamics and migration through Rac1 and FAK. Integr Biol 8(8):821–835

    Article  CAS  Google Scholar 

  64. Polio SR et al (2012) A micropatterning and image processing approach to simplify measurement of cellular traction forces. Acta Biomater 8(1):82–88

    Article  CAS  PubMed  Google Scholar 

  65. Stricker J et al (2010) Optimization of traction force microscopy for micron-sized focal adhesions. J Phys Condens Matter 22(19):194104

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Polio SR et al (2014) Topographical control of multiple cell adhesion molecules for traction force microscopy. Integr Biol 6(3):357–365

    Article  CAS  Google Scholar 

  67. Piotrowski AS et al (2015) Three-dimensional traction force microscopy of engineered epithelial tissues. In: Nelson CM (ed) Tissue morphogenesis. Methods in molecular biology (methods and protocols). Humana Press, New York, NY, pp 191–206

    Google Scholar 

  68. Hall MS et al (2016) Fibrous nonlinear elasticity enables positive mechanical feedback between cells and ECMs. Proc Natl Acad Sci U S A 113(49):14043–14048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sabass B et al (2008) High resolution traction force microscopy based on experimental and computational advances. Biophys J 94(1):207–220

    Article  CAS  PubMed  Google Scholar 

  70. Colin-York H, Eggeling C, Fritzsche M (2017) Dissection of mechanical force in living cells by super-resolved traction force microscopy. Nat Protoc 12(4):783–796

    Article  CAS  PubMed  Google Scholar 

  71. Feng X et al. (2014) An adaptive algorithm for tracking 3D bead displacements: application in biological experiments. Meas Sci Technol 25(5):055701

    Article  PubMed  CAS  Google Scholar 

  72. Bar-Kochba E et al (2015) A fast iterative digital volume correlation algorithm for large deformations. Exp Mech 55(1):261–274

    Article  Google Scholar 

  73. Franck C et al (2007) Three-dimensional full-field measurements of large deformations in soft materials using confocal microscopy and digital volume correlation. Exp Mech 47(3):427–438

    Article  Google Scholar 

  74. Szeliski R (2011) Computer vision: algorithms and applications. In: Texts in computer science. Springer-Verlag, London

    Google Scholar 

  75. Holenstein CN, Silvan U, Snedeker JG (2017) High-resolution traction force microscopy on small focal adhesions - improved accuracy through optimal marker distribution and optical flow tracking. Sci Rep 7:41633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hall MS et al (2012) Mapping three-dimensional stress and strain fields within a soft hydrogel using a fluorescence microscope. Biophys J 102(10): 2241–2250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Merkel R et al (2007) Cell force microscopy on elastic layers of finite thickness. Biophys J 93(9): 3314–3323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. del Alamo JC et al (2013) Three-dimensional quantification of cellular traction forces and mechanosensing of thin substrata by Fourier traction force microscopy. PLoS One 8(9): e69850

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Brask JB et al (2015) Compressed sensing traction force microscopy. Acta Biomater 26:286–294

    Article  PubMed  Google Scholar 

  80. Sune-Aunon A et al (2017) Full L1-regularized traction force microscopy over whole cells. BMC Bioinformatics 18(1):365

    Article  PubMed  PubMed Central  Google Scholar 

  81. Engl HW, Hanke M, Neubauer A (2000) Regularization of inverse problems. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Book  Google Scholar 

  82. Notbohm J et al (2016) Cellular contraction and polarization drive collective cellular motion. Biophys J 110(12):2729–2738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Carey SP et al (2013) Leading malignant cells initiate collective epithelial cell invasion in a three-dimensional heterotypic tumor spheroid model. Clin Exp Metastasis 30(5):615–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Haeger A et al (2014) Cell jamming: collective invasion of mesenchymal tumor cells imposed by tissue confinement. Biochim Biophys Acta 1840(8):2386–2395

    Article  CAS  PubMed  Google Scholar 

  85. Tambe DT et al (2011) Collective cell guidance by cooperative intercellular forces. Nat Mater 10(6):469–475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Park JA et al (2016) Collective migration and cell jamming in asthma, cancer and development. J Cell Sci 129(18):3375–3383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Desai RA et al (2013) Contact inhibition of locomotion probabilities drive solitary versus collective cell migration. J R Soc Interface 10(88):20130717

    Article  PubMed  PubMed Central  Google Scholar 

  88. Jang H et al (2017) Homogenizing cellular tension by hepatocyte growth factor in expanding epithelial monolayer. Sci Rep 8:45844

    Article  CAS  PubMed  Google Scholar 

  89. Zhao R et al (2014) Magnetic approaches to study collective three-dimensional cell mechanics in long-term cultures (invited). J Appl Phys 115(17):172616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. van Oers RF et al (2014) Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro. PLoS Comput Biol 10(8):e1003774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Trepat X et al (2009) Physical forces during collective cell migration. Nat Phys 5(6):426–430

    Article  CAS  Google Scholar 

  92. Trepat X, Fredberg JJ (2011) Plithotaxis and emergent dynamics in collective cellular migration. Trends Cell Biol 21(11):638–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pegoraro AF, Fredberg JJ, Park JA (2016) Problems in biology with many scales of length: cell-cell adhesion and cell jamming in collective cellular migration. Exp Cell Res 343(1):54–59

    Article  CAS  PubMed  Google Scholar 

  94. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3(5):362–374

    Article  CAS  PubMed  Google Scholar 

  95. Labernadie A et al (2017) A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol 19(3):224–237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhou J et al (2015) Force production and mechanical accommodation during convergent extension. Development 142(4):692–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Serra-Picamal X et al (2012) Mechanical waves during tissue expansion. Nat Phys 8(8):628–634

    Article  CAS  Google Scholar 

  98. Chaudhuri O et al (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15(3):326–334

    Article  CAS  PubMed  Google Scholar 

  99. Chaudhuri O et al (2015) Substrate stress relaxation regulates cell spreading. Nat Commun 6:6364

    Article  PubMed  CAS  Google Scholar 

  100. Ronceray P, Broedersz CP, Lenz M (2016) Fiber networks amplify active stress. Proc Natl Acad Sci U S A 113(11):2827–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Reinhart-King CA, Dembo M, Hammer DA (2008) Cell-cell mechanical communication through compliant substrates. Biophys J 95(12):6044–6051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wang H et al (2014) Long-range force transmission in fibrous matrices enabled by tension-driven alignment of fibers. Biophys J 107(11):2592–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Carey SP, Martin KE, Reinhart-King CA (2017) Three-dimensional collagen matrix induces a mechanosensitive invasive epithelial phenotype. Sci Rep 7:42088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Mason BN et al (2013) Tuning 3D collagen matrix stiffness independently of collagen concentration modulates endothelial cell behavior. Acta Biomater 9(1):4635–4644

    Article  CAS  PubMed  Google Scholar 

  105. Breckenridge MT et al (2014) Substrates with engineered step changes in rigidity induce traction force polarity and durotaxis. Cell Mol Bioeng 7(1):26–34

    Article  PubMed  Google Scholar 

  106. Vincent LG et al (2013) Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnol J 8(4):472–484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Saez A et al (2007) Rigidity-driven growth and migration of epithelial cells on microstructured anisotropic substrates. Proc Natl Acad Sci U S A 104(20):8281–8286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Kim JH et al (2013) Propulsion and navigation within the advancing monolayer sheet. Nat Mater 12(9):856–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Keating M et al (2017) Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility. Acta Biomater 57:304–312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Ballester-Beltrán J et al (2015) Sensing the difference: the influence of anisotropic cues on cell behavior. Front Mater 2:39

    Article  Google Scholar 

  111. Crouch AS et al (2009) Correlation of anisotropic cell behaviors with topographic aspect ratio. Biomaterials 30(8):1560–1567

    Article  CAS  PubMed  Google Scholar 

  112. Qi L et al (2013) The effects of topographical patterns and sizes on neural stem cell behavior. PLoS One 8(3):e59022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Fernandez P, Bausch AR (2009) The compaction of gels by cells: a case of collective mechanical activity. Integr Biol 1(3):252–259

    Article  CAS  Google Scholar 

  114. Daley WP, Peters SB, Larsen M (2008) Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci 121(Pt 3):255–264

    Article  CAS  PubMed  Google Scholar 

  115. Conklin MW et al (2011) Aligned collagen is a prognostic signature for survival in human breast carcinoma. Am J Pathol 178(3):1221–1232

    Article  PubMed  PubMed Central  Google Scholar 

  116. Antonacci G, Braakman S (2016) Biomechanics of subcellular structures by non-invasive Brillouin microscopy. Sci Rep 6:37217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Scarcelli G, Yun SH (2007) Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat Photon 2:39–43

    Article  Google Scholar 

  118. Zhang JT et al (2016) Line-scanning Brillouin microscopy for rapid non-invasive mechanical imaging. Sci Rep 6:35398

    Google Scholar 

  119. Scarcelli G et al (2015) Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat Methods 12(12):1132–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Kennedy BF, Kennedy KM, Sampson DD (2014) A review of optical coherence elastography: fundamentals, techniques and prospects. IEEE J Sel Top Quantum Electron 20(2):1–17

    Article  CAS  Google Scholar 

  121. Wang S, Larin KV (2015) Optical coherence elastography for tissue characterization: a review. J Biophotonics 8(4):279–302

    Article  PubMed  Google Scholar 

  122. Mulligan JA et al (2016) Emerging approaches for high-resolution imaging of tissue biomechanics with optical coherence elastography. IEEE J Sel Top Quantum Electron 22(3):246–265

    Article  CAS  Google Scholar 

  123. Kotlarchyk MA et al (2011) Concentration independent modulation of local micromechanics in a fibrin gel. PLoS One 6(5):e20201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim J et al (2016) Three-dimensional reflectance traction microscopy. PLoS One 11(6):e0156797

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Bouchard MB et al (2015) Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms. Nat Photonics 9(2):113–119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Stout DA et al (2016) Mean deformation metrics for quantifying 3D cell-matrix interactions without requiring information about matrix material properties. Proc Natl Acad Sci U S A 113(11):2898–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Park CY et al (2015) High-throughput screening for modulators of cellular contractile force. Integr Biol 7(10):1318–1324

    Article  Google Scholar 

  128. Plotnikov SV et al (2012) Force fluctuations within focal adhesions mediate ECM-rigidity sensing to guide directed cell migration. Cell 151(7):1513–1527

    Article  CAS  PubMed  Google Scholar 

  129. Parker KK et al (2002) Directional control of lamellipodia extension by constraining cell shape and orienting cell tractional forces. FASEB J 16(10):1195–1204

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Recent studies and results presented here were funded in part by a grant from the US National Institutes of Health (R21EB022927, Adie) and a Cornell Discovery and Innovation Research Seed Award (Adie). Additional information can be found at http://adie.research.engineering.cornell.edu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven G. Adie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mulligan, J.A., Bordeleau, F., Reinhart-King, C.A., Adie, S.G. (2018). Traction Force Microscopy for Noninvasive Imaging of Cell Forces. In: Dong, C., Zahir, N., Konstantopoulos, K. (eds) Biomechanics in Oncology. Advances in Experimental Medicine and Biology, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-319-95294-9_15

Download citation

Publish with us

Policies and ethics