Skip to main content

The Role of Electricity Transmission Infrastructure

  • Chapter
  • First Online:
Energiewende "Made in Germany"

Abstract

The infrastructure required to assure a reliable, clean, and economic electricity system is among the crucial conditions that have to be established for the energiewende to succeed. This chapter summarizes issues surrounding electricity transmission in the context of the energiewende. Even though infrastructure is an important ingredient of the energiewende, its importance has been exaggerated in the policy debate and in the public debate as well. Often hailed as a “critical factor” in the energiewende—and sometimes as the final nail in its coffin—transmission infrastructure has not been a demonstrable obstacle to the energiewende thus far, thanks to the highly developed network inherited from the old system and its continuous improvement over the last decade. Even in the medium term—that is, into the 2020s—no serious roadblocks for the energiewende are to be expected, provided that the transmission system operators (TSOs) and regulatory agencies stick to the path of transmission expansion that has proven reliable so far. Sections 8.2 and 8.3 describe network planning and development from its inception in the 2000s until today. Over this period, a new method of transmission planning has been implemented, creating more transparency for transmission policies, which had not been open to public scrutiny under the old system. Section 8.4 then traces a decade of network development in Germany. As elaborated in detail, rates of transmission investment remain consistent over the years, and important connections, such as links between the former GDR and West Germany have been completed. Section 8.5 discusses the current debate of introducing multiple price zones in Germany. Moreover, it summarizes results of a study on the effects of establishing multiple price zones in Germany suggesting that there is no need to split the German electricity market into zones. Section 8.6 details an interesting recent development: the explicit integration of carbon dioxide (CO2) constraints into network planning. Finally, Sect. 8.7 concludes.

In the simplest—and most recommended—regulatory approach, a plan for transmission network expansion would be prepared by the System Operator …The transmission facilities that are included in the plan will be built … under some kind of cost-of-service remuneration. … The simple idea behind this simple scheme that is in use in several countries is just to make the business of transmission investment as “unexciting” (“boring” or “uneventful”) as possible. Sophistication and complexity in transmission planning—“leaving it to the market,” for instance—only cause indecision by investors, higher capital costs and—most frequently—lack of investment.

Luis Olmos, and Ignacio Perez-Arriaga (2009, 5286): A comprehensive approach for computation and implementation of efficient electricity transmission network charges.

This chapter is based on a series of papers and studies carried out in the Masmie and EE-Netze projects supported by the Stiftung Mercator, and complemented by other research papers (see references); it has been updated from it has been updated from Chap. 2 of my dissertation (Gerbaulet 2017). The modeling work was carried out using various versions of ELMOD, a European-wide electricity market and network model developed by Leuthold et al. (2012) and updated by Egerer et al. (2014). Thanks to Friedrich Kunz, Alexander Weber, and the entire ELMOD team for support and advice; the usual disclaimer applies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This chapter does not consider electricity distribution infrastructure.

  2. 2.

    In 2015, the possibility of 3% curtailment of renewable electricity feed-in was introduced into the grid planning process, which reduced the need for investments that are needed only a very few hours per year to accommodate both high wind and photovoltaic (PV) feed-in.

  3. 3.

    See EC (1996). Directive 96/92/EC of the European Parliament and of the Council of 19 December 1996 concerning common rules for the internal market in electricity.

  4. 4.

    EC (2003). Directive 2003/54/EC of the European Parliament and of the Council of 26 June 2003 concerning common rules for the internal market in electricity and repealing Directive 96/92/EC.

  5. 5.

    EnLAG (2009). Gesetz zum Ausbau von Energieleitungen (Energieleitungsausbaugesetz—EnLAG).

  6. 6.

    Hirschhausen, Christian von, Robert Wand, and Christina Beestermöller. 2010. “Bewertung der dena-Netzstudie II und des europäischen Infrastrukturprogramms.” Gutachten im Auftrag des WWF Deutschland. Berlin, Germany: TU Berlin.

  7. 7.

    See EC (2009). Directive 2009/72/EC of the European Parliament and of the Council of 13 July 2009 concerning common rules for the internal market in electricity and repealing Directive 2003/54/EC.

  8. 8.

    The German Energy Law of 2005 (BGBl 2005, Part I, p. 1970 http://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl105s1970.pdf), which implemented the Directive 2003/54/EC (EC, 2003b), was adapted in the Gesetz zur Neuregelung en ergiewirtschaftsrechtlicher Vorschriften (BGBl 2011, Part I, p. 1554 http://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl111041.pdf) implementing the directive 2009/72/EC (see previous footnote). Since 2011, the planning process has been adapted, especially regarding the frequency of the planning procedures, see BGBl 2015, Part I, p. 2200 http://www.bgbl.de/xaver/bgbl/start.xav?startbk=Bundesanzeiger_BGBl&jumpTo=bgbl115s2194.pdf

  9. 9.

    Some of these points are laid out in detail in Jarass und Obermair (2012).

  10. 10.

    For a survey and another concrete application see Kemfert et al. (2016).

  11. 11.

    The Brattle Group (2007): International Review of Transmission Planning Arrangements, p. 32.

  12. 12.

    See BNetzA (2011). BK4-11-304 Beschluss hinsichtlich der Festlegung von Eigenkapitalzinssätzen für Betreiber von Elektrizitäts- und Gasversorgungsnetzen für die zweite Regulierungsperiode in der Anreizregulierung as well as BNetza(2016). Bundesnetzagentur legt Eigenkapitalrenditen für Strom- und Gasnetze fest. https://www.bundesnetzagentur.de/SharedDocs/Pressemitteilungen/DE/2016/161012_EKZ.html

  13. 13.

    NOVA, in German, stands for NetzOptimierung, -Verstärkung und –Ausbau (network optimization, strengthening, and expansion).

  14. 14.

    The pilot project of installing high-temperature conductors in 2013 was successful: the capacity of the 380 kV line between Remptendorf and Redwitz (East Germany to Bavaria) was increased by 400 MW or approx. 25%.

  15. 15.

    Agora Energiewende, and Energynautics. 2018. “Toolbox für die Stromnetze—Für die künftige Integration von Erneuerbaren Energien und für das Engpassmanagement.” Agora Energiewende.

  16. 16.

    In the Baltic Sea, the number of projects is considerably lower. BNetzA. 2018b. “Offshore-Monitoring Stand des Ausbaus nach dem vierten Quartal 2017.” Bonn, Germany: Bundesnetzagentur.

  17. 17.

    See ZEIT ONLINE (2011): “Erneuerbare Energien: Stromnetzbetreiber sieht Ausbau von Windparks gefährdet.” Die Zeit, November 16, sec. Wirtschaft. Last accessed September 19, 2016, at http://www.zeit.de/wirtschaft/2011-11/windparks-finanzierung

  18. 18.

    The dena I study had suggested a need for investment in 850 km of new-built lines, and 392 km of line upgrades.

  19. 19.

    The source states 4.4 TWh but accounts for upward and downward redispatch measures.

  20. 20.

    See the Monitoring Reports by BNetzA (2013, 2014, and 2016 for details).

  21. 21.

    See European Commission (2014): Draft: Commission Regulation: Network Code for Capacity Allocation and Congestion Management. Title II, Chap. 2, Bidding zone configuration. BNetzA. 2015. “Monitoringbericht 2015.” Bonn, Germany.

  22. 22.

    In 2018, the German regulator suggested that the one between South Germany and Austria be split, but details on the implementation were not provided.

  23. 23.

    This section is based on Mieth et al. (2015a, b) as well as findings from Gerbaulet et al. (2012a) and Reitz, Felix, Clemens Gerbaulet, von Hirschhausen, Claudia Kemfert, Casimir Lorenz, and Pao-Yu Oei. 2014. “Verminderte Kohleverstromung könnte zeitnah einen relevanten Beitrag zum deutschen Klimaschutzziel leisten.” 47. Wochenbericht. Berlin, Germany: DIW.

  24. 24.

    50Hertz, Amprion, TenneT, and TransnetBW. 2018. “Szenariorahmen für den Netzentwicklungsplan Strom 2030 (Version 2019)—Entwurf der Übertragungsnetzbetrreiber.”

References

  • BMWi. 2015a. An Electricity Market for Germany’s Energy Transition – White Paper by the Federal Ministry for Economic Affairs and Energy. Berlin.

    Google Scholar 

  • ———. 2015b. The Energy of the Future, Fourth ‘Energy Transition’ Monitoring Report – Summary. Berlin.

    Google Scholar 

  • Boll, Georg. 1969. Geschichte des Verbundbetriebs: Entstehung und Entwicklung des Verbundbetriebs in der deutschen Elektrizitätswirtschaft bis zum europäischen Verbund. Frankfurt/Main: Verlags- u. Wirtschaftsgesellschaft der Elektrizitätswerke.

    Google Scholar 

  • Breuer, Christopher, and Albert Moser. 2014. Optimized Bidding Area Delimitations and Their Impact on Electricity Markets and Congestion Management. In IEEE proceedings. Kraków: IEEE.

    Google Scholar 

  • Burstedde, Barbara. 2012. From Nodal to Zonal Pricing: A Bottom-up Approach to the Second-Best. In EEM proceedings, Florence.

    Google Scholar 

  • Consentec, and Frontier Economics. 2011. Relevance of Established National Bidding Areas for European Power Market Integration – an Approach to Welfare Oriented Evaluation. Study commissioned by the Federal Network Agency (BNetzA), Cologne and Bonn.

    Google Scholar 

  • dena. 2005. dena-Netzstudie I (Endbericht) – Energiewirtschaftliche Planung für die Netzintegration von Windenergie in Deutschland an Land und Offshore bis zum Jahr 2020. Cologne: Deutsche Energie-Agentur GmbH.

    Google Scholar 

  • ———. 2010. dena-Netzstudie II (Endbericht) – Integration erneuerbarer Energien in die deutsche Stromversorgung im Zeitraum 2015-2020 mit Ausblick auf 2025. Berlin: Deutsche Energie-Agentur GmbH.

    Google Scholar 

  • Egerer, Jonas, Lucas Bückers, Gregor Drondorf, Clemens Gerbaulet, Paul Hörnicke, Rüdiger Säurich, Claudia Schmidt, et al. 2009. Sustainable Energy Networks for Europe – The Integration of Large-Scale Renewable Energy Sources until 2050. Electricity Market working papers WP-EM-35, Dresden.

    Google Scholar 

  • Egerer, Jonas, Clemens Gerbaulet, Richard Ihlenburg, Friedrich Kunz, Benjamin Reinhard, Christian von Hirschhausen, Alexander Weber, and Jens Weibezahn. 2014. Electricity Sector Data for Policy-Relevant Modeling: Data Documentation and Applications to the German and European Electricity Markets. DIW data documentation 72, Berlin.

    Google Scholar 

  • Egerer, Jonas, Jens Weibezahn, and Hauke Hermann. 2016. Two price zones for the German electricity market – market implications and distributional effects. Energy Economics 59 (September): 365–381.

    Article  Google Scholar 

  • ENTSO-E. 2010. Ten-Year Network Development Plan 2010 – 2020. Final report. Brussels: European Network of Transmission System Operators for Electricity.

    Google Scholar 

  • ———. 2018. First Edition of the Bidding Zone Review. Final report, Brussels.

    Google Scholar 

  • EnWG. 2011. Gesetz über die Elektrizitäts- und Gasversorgung (Energiewirtschaftsgesetz - EnWG) Novelle 2011.

    Google Scholar 

  • Eyre, Sebastian, and Michael G. Pollitt. 2016. Competition and Regulation in Electricity Markets, The International Library of Critical Writings in Economics 315. Cheltenham: Edward Elgar Publishing.

    Book  Google Scholar 

  • Gerbaulet, Clemens. 2017. Electricity Sector Decarbonization in Germany and Europe - a Model-Based Analysis of Operation and Infrastructure Investments. Berlin: Technische Universität Berlin.

    Google Scholar 

  • Gerbaulet, Clemens, Jonas Egerer, Pao-Yu Oei, Judith Paeper, and Christian von Hirschhausen. 2012. Die Zukunft der Braunkohle in Deutschland im Rahmen der Energiewende. DIW Berlin, Politikberatung kompakt 69. Berlin: Deutsches Institut für Wirtschaftsforschung (DIW).

    Google Scholar 

  • Jarass, Lorenz, and Anna Jarass. 2016. Integration von erneuerbarem Strom: Stromüberschüsse und Stromdefizite – mit Netzentwicklungsplan 2025, MV-Wissenschaft. 1st ed. Münster: Verl.-Haus Monsenstein und Vannerdat.

    Google Scholar 

  • Jarass, Lorenz, and Gustav M. Obermair. 2012. Welchen Netzumbau erfordert die Energiewende? – Unter Berücksichtigung des Netzentwicklungsplans 2012. Münster: Verl.-Haus Monsenstein und Vannerdat.

    Google Scholar 

  • Kemfert, Claudia, Friedrich Kunz, and Juan Rosellón. 2016. A welfare analysis of electricity transmission planning in Germany. Energy Policy 94: 446–452.

    Article  Google Scholar 

  • Leuthold, Florian, Hannes Weigt, and Christian von Hirschhausen. 2012. A large-scale spatial optimization model of the European electricity market. Networks and Spatial Economics 12 (1): 75–107.

    Article  Google Scholar 

  • Mieth, Robert, Clemens Gerbaulet, Christian von Hirschhausen, Claudia Kemfert, Friedrich Kunz, and Richard Weinhold. 2015a. Perspektiven für eine sichere, preiswerte und umweltverträgliche Energieversorgung in Bayern. DIW Berlin, Politikberatung kompakt 97. Berlin: Deutsches Institut für Wirtschaftsforschung (DIW).

    Google Scholar 

  • Mieth, Robert, Richard Weinhold, Clemens Gerbaulet, Christian von Hirschhausen, and Claudia Kemfert. 2015b. Electricity Grids and Climate Targets: New Approaches to Grid Planning. DIW Economic Bulletin 5/2015, Berlin.

    Google Scholar 

  • Olmos, Luis, and Ignacio J. Pérez-Arriaga. 2009. A comprehensive approach for computation and implementation of efficient electricity transmission network charges. Energy Policy 37 (12): 5285–5295.

    Article  Google Scholar 

  • Schröder, Andreas, Pao-Yu Oei, Aram Sander, Lisa Hankel, and Lilian Laurisch. 2013. The integration of renewable energies into the German transmission grid - a scenario comparison. Energy Policy 61: 140–150.

    Article  Google Scholar 

  • The Brattle Group. 2007. International Review of Transmission Planning Arrangements. A report for the Australian Energy Market Commission. Brussels: The Brattle Group.

    Google Scholar 

  • Trepper, Katrin, Michael Bucksteeg, and Christoph Weber. 2013. An Integrated Approach to Model Redispatch and to Assess Potential Benefits from Market Splitting in Germany. EWL working paper 19/2013. Essen: Chair for Management Science and Energy Economics University of Duisburg-Essen.

    Google Scholar 

  • ———. 2015. Market splitting in Germany – new evidence from a three-stage numerical model of Europe. Energy Policy 87: 199–215.

    Article  Google Scholar 

  • Weber, Alexander, Thorsten Beckers, Patrick Behr, Nils Bieschke, Stella Fehner, and Christian von Hirschhausen. 2013. Long-Term Power System Planning in the Context of Changing Policy Objectives – Conceptual Issues and Selected Evidence from Europe. Study commissioned by Smart Energy for Europe Platform (SEFEP).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clemens Gerbaulet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gerbaulet, C. (2018). The Role of Electricity Transmission Infrastructure. In: von Hirschhausen, C., Gerbaulet, C., Kemfert, C., Lorenz, C., Oei, PY. (eds) Energiewende "Made in Germany". Springer, Cham. https://doi.org/10.1007/978-3-319-95126-3_8

Download citation

Publish with us

Policies and ethics