Skip to main content

Mechanical Behavior and Deformation Mechanisms of Mg-based Alloys in Shear Using In-Situ Synchrotron Radiation X-Ray Diffraction

  • Conference paper
  • First Online:
Dynamic Behavior of Materials, Volume 1

Abstract

A fundamental understanding of magnesium-based alloys during high rate, large deformation processes that occur during impact and penetration are not well-known. This metal possesses a limited number of deformation mechanisms, each with their own disparate strengths, strain hardening rates, and strain rate sensitivities. Consequently, these alloys exhibit severe tension-compression asymmetry and anisotropy dictated by their processing history and the applied deformation. Thus, an understanding of material behavior undergoing large shears at dynamic rates is required. Experiments have been performed on a specimen geometry that induces shear localization in “pure” simple shear, called the compact forced simple shear (CFSS) specimen. The deformation occurs on a 2D plane in the specimen, which is oriented with respect to directional aspects of the material’s microstructure and deformation modes. Experiments at dynamic strain rates have been performed to determine how the mechanical behavior in shear evolves and correlates to the microstructural deformation mechanisms. The experiments were performed at the Dynamic Compression Sector of the Advanced Photon Source at Argonne National Laboratories using in-situ synchrotron x-ray diffraction aimed to probe the microstructural evolution during shear-induced localization. By correlating the propensity for shear localization to occur with the mechanical response of various orientations, we have built a data set to compare existing models to identify key deformation mechanisms responsible for localization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mordike, B.L., Ebert, T.: Magnesium properties–applications–potential. Mat. Sci. Eng. A. 302, 37–45 (2001)

    Article  Google Scholar 

  2. Avedesian, M., Baker, H. (eds.): Magnesium and Magnesium Alloys, ASM Specialty Handbook. ASM International, Metals Park (1999)

    Google Scholar 

  3. Jain, A., Agnew, S.R.: Modeling the temperature dependent effect of twinning on the behavior of magnesium alloy AZ31B sheet. Mat. Sci. Eng. A. 462, 29–36 (2007)

    Article  Google Scholar 

  4. Agnew, S.R., Duygulu, Ö.: Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B. Int. J. Plast. 21, 1161–1193 (2005)

    Article  Google Scholar 

  5. Chang, Y., Kochmann, D.M.: A variational constitutive model for slip-twinning interactions in hcp metals: application to single- and polycrystalline magnesium. Int. J. Plast. 73, 39–61 (2015)

    Article  Google Scholar 

  6. Agnew, S.R., Tomé, C.N., Brown, D.W., Holden, T.M., Vogel, S.C.: Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling. Scripta Mat. 48, 1003–1008 (2003)

    Article  Google Scholar 

  7. Proust, G., Tomé, C.N., Jain, A., Agnew, S.R.: Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int. J. Plast. 25, 861–880 (2009)

    Article  Google Scholar 

  8. Lentz, M., Risse, M., Schaefer, N., Reimers, W., Beyerlein, I.J.: Strength and ductility with \( \left\{10\overline{1}1\right\} \)\( \left\{10\overline{1}2\right\} \) double twinning in a magnesium alloy. Nat. Commun. 7, 11068 (2016)

    Article  Google Scholar 

  9. Bronkhorst, C.A., Cerreta, E.K., Xue, Q., Maudlin, P.J., Mason, T.A., Gray III, G.T.: An experimental and numerical study of the localization behavior of tantalum and stainless steel. Int. J. Plast. 22, 1304–1335 (2006)

    Article  Google Scholar 

  10. Marchand, A., Duffy, J.: An experimental study of the formation process of adiabatic shear bands in a structural steel. J. Mech. Phys. Solids. 36, 251–283 (1988)

    Article  Google Scholar 

  11. Rittel, D., Lee, S., Ravichandran, G.: A Shear-compression specimen for large strain testing. Exp. Mech. 42, 58–64 (2002)

    Article  Google Scholar 

  12. Gray III, G.T., Vecchio, K.S., Livescu, V.: Compact forced simple-shear sample for studying shear localization in materials. Acta Mater. 103, 12–22 (2016)

    Article  Google Scholar 

  13. Meredith, C.S., Lloyd, J.T., Sano, T.: The quasi-static and dynamic response of fine-grained Mg alloy AMX602: an experimental and computational study. Mat. Sci. Eng. A. 673, 73–82 (2016)

    Article  Google Scholar 

  14. Hustedt, C.J., Lambert, P.K., Huskins-Retzlaff, E.L., Casem, D.T., Tate, M.W., Philipp, H.T., Woll, A.R., Purohit, P., Weiss, J.T., Gruner, S.M., Ramesh, K.T., Hufnagel, T.C.: In situ time-resolved measurements of extension twinning during dynamic compression of polycrystalline magnesium. J. Dyn. Behav. Mat. 4, 222–230 (2018)

    Article  Google Scholar 

  15. Brown, D.W., Agnew, S.R., Bourke, M.A.M., Holden, T.M., Vogel, S.C., Tomé, C.N.: Internal strain and texture evolution during deformation twinning in magnesium. Mat. Sci. Eng. A. 399, 1–12 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This publication is based upon work performed at the Dynamic Compression Sector, which is operated by Washington State University under the U.S. Department of Energy (DOE)/National Nuclear Security Administration award no. DE-NA0002442. This research used resources of the Advanced Photon Source, a DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. The work was performed under a cooperative agreement between the Army Research Laboratory and the University of North Texas (W911NF-16-2-0189). Thanks to Nick Lorenzo (ARL) for helping to conduct the experiments at DCS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher S. Meredith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meredith, C.S., Herl, Z., Young, M.L. (2019). Mechanical Behavior and Deformation Mechanisms of Mg-based Alloys in Shear Using In-Situ Synchrotron Radiation X-Ray Diffraction. In: Kimberley, J., Lamberson, L., Mates, S. (eds) Dynamic Behavior of Materials, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95089-1_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-95089-1_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-95088-4

  • Online ISBN: 978-3-319-95089-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics