Skip to main content

A Fundamental Study of Disodium Carboxymethyl Trithiocarbonate (Orfom® D8) in Flotation Separation of Copper-Molybdenum Sulfides

  • Conference paper
  • First Online:
Extraction 2018

Abstract

The chalcopyrite -molybdenite (Cu-Mo ) flotation industry is increasingly turning to organic depressants as suitable replacements for inorganic reagents, such as NaHS, due to environmental and safety concerns as well as high consumption rates of the inorganic reagents. This presents an opportunity for improvements or design and synthesis of alternative reagents. Disodium carboxymethyl trithiocarbonate (Orfom® D8) depressant is an organic depressant with a carboxylate group on one end and a trithiocarbonate group at the other end. Fundamental results are shown regarding the interaction of the Orfom® D8 depressant in the bulk flotation of a Cu-Mo concentrate from an operating North American mine. Cyclic Voltammetry on pure copper and Fourier Transform Infrared Spectroscopy (FT-IR ) and X-ray Photoelectron Spectroscopy (XPS) measurements on pure chalcopyrite with Orfom® D8 depressant treatment are also reported. Through such characterization techniques a potential adsorption mechanism of Orfom® D8 on the mineral surface was identified and its depressant characteristics in the Cu-Mo flotation systems explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laskowski JS, Liu Q, Bolin NJ (1991) Polysaccharides in flotation of sulphides. Part I. Adsorption of polysaccharides onto mineral surfaces. Int J Miner Process Elsevier Sci Publ B.V 33:223–234

    Article  CAS  Google Scholar 

  2. Prasad MS (1992) Reagents in the mineral industry-recent trends and applications. Miner Eng 5:3–5

    Google Scholar 

  3. Yin WZ, Zhang LR, Xie F (2010) Flotation of Xinhua molybdenite using sodium sulfide as modifier. Trans Nonferrous Met Soc China (English Ed) 20:702–706

    Article  CAS  Google Scholar 

  4. Poorkani M, Banisi S (2005) Industrial use of nitrogen in flotation of molybdenite at the Sarcheshmeh copper complex. Miner Eng 18:735–738

    Article  CAS  Google Scholar 

  5. Pearse MJ (2005) An overview of the use of chemical reagents in mineral processing. Miner Eng 18:139–149

    Article  CAS  Google Scholar 

  6. Yin Z, Sun W, Hu Y, Zhai J, Qingjun G (2017) Evaluation of the replacement of NaCN with depressant mixtures in the separation of copper-molybdenum sulphide ore by flotation. Sep Purif Technol 173:9–16

    Article  CAS  Google Scholar 

  7. Bulatovic SM (2007) Handbook of flotation reagents: chemistry, theory and practice: volume 1: flotation of sulfide ores

    Google Scholar 

  8. Li MY, Wei DZ, Shen YB, Liu WG, Gao SL, Liang GQ (2015) Selective depression effect in flotation separation of copper-molybdenum sulfides using 2, 3-disulfanylbutanedioic acid. Trans Nonferrous Met Soc China (English Ed) 25:3126–3132

    Article  CAS  Google Scholar 

  9. Bhambhani T, Nagaraj DR, Gupta P, Lawrence A, Peart M, Zarate P (2014) Practical aspects of Cu-Mo separations and alternatives to NaSH and Nokes reagent. In: IMPC 2014-27th international mineral processing congress

    Google Scholar 

  10. Gaudin AM (1957) Flotation. McGraw Hill, New York

    Google Scholar 

  11. Chander S (1988) Electrochemistry of sulfide mineral flotation Miner. Met Process, 104–14

    Google Scholar 

  12. Nagaraj DR, Wang SS, Avotins PV, Dowling E (1983) Structure-activity relationships for copper depressants. Soc Min Eng AIME

    Google Scholar 

  13. Richardson PE, Walker GW (1985) The flotation of chalcocite, bornite, chalcopyrite and pyrite in an electrochemical flotation cell. In: Proceedings of the XVth international mineral processing congress (Cannes’ St Etienne)

    Google Scholar 

  14. Liu Y, Liu Q (2004) Flotation separation of carbonate from sulfide minerals, II: mechanisms of flotation depression of sulfide minerals by thioglycollic acid and citric acid. Miner Eng 17:865–878

    Article  CAS  Google Scholar 

  15. Chen JH, Lan LH, Liao XJ (2013) Depression effect of pseudo glycolythiourea acid in flotation separation of copper-molybdenum. Trans Nonferrous Met Soc China (English Ed) 23:824–831

    Article  CAS  Google Scholar 

  16. Davis SP (2011) Manufacture, properties, and usage

    Google Scholar 

  17. Ngah WSW, Teong LC, Hanafiah MAKM (2010) Adsorption of dyes and heavy metal ions by chitosan composites: a review. Carbohydr Polym 83:1446–1456

    Article  Google Scholar 

  18. Huang P, Cao M, Liu Q (2012) Using chitosan as a selective depressant in the differential flotation of Cu–Pb sulfides. Int J Miner Process 106–109:8–15

    Article  Google Scholar 

  19. Huang P, Cao M, Liu Q (2012) Adsorption of chitosan on chalcopyrite and galena from aqueous suspensions. Coll Surf Physicochem Eng Asp 409:167–175

    Article  CAS  Google Scholar 

  20. Huang P, Cao M, Liu Q (2013) Selective depression of pyrite with chitosan in Pb-Fe sulfide flotation. Miner Eng 46–47:45–51

    Article  Google Scholar 

  21. Li M, Wei D, Liu Q, Liu W, Zheng J, Sun H (2015) Flotation separation of copper-molybdenum sulfides using chitosan as a selective depressant. Miner Eng 83:217–222

    Article  CAS  Google Scholar 

  22. Bakinov KG, Vaneev II, Gorlovsky SI, Eropkin VI, Zashinkin RV, Konev AS (1964) New methods of sulphide concentrate upgrading. Miner Process Congr, 227–238

    Google Scholar 

  23. Liu Q, Laskowski JS (1999) On the adsorption mechanism of carboxymethyl cellulose. Polym Miner Process, 357–372

    Google Scholar 

  24. Liu Q, Zhang Y, Laskowski JS (2000) The adsorption of polysaccharides onto mineral surfaces: an acid/base interaction. Int J Miner Process 60:229–245

    Article  CAS  Google Scholar 

  25. Liu Q, Laskowski JS (2002) Adsorption of polysaccharides on mineral surfaces from aqueous solutions. Encycl Surf Coll Sci, 573–590

    Google Scholar 

  26. Liu Q, Laskowski JS (1989) The role of metal hydroxides at mineral surfaces in dextrin adsorption, II. Chalcopyrite-galena separations in the presence of dextrin. Int J Miner Process 27:147–155

    Article  CAS  Google Scholar 

  27. Iwasaki I, Lai RW (1965) Starches and starch products as depressants in soap flotation of activated silica from iron ores. Trans AIME, 401–6

    Google Scholar 

  28. Woods R, Young CA, Yoon RH (1990) Ethyl xanthate chemisorption isotherms and Eh- pH diagrams for the copper/water/xanthate and chalcocite/water/xanthate systems. Int J Miner Process 30:17–33

    Article  CAS  Google Scholar 

  29. Young CA, Basilio CI, Yoon RH (1991) Thermodynamics of chalcocite-xanthate interactions. Int J Miner Process 31:265–279

    Article  CAS  Google Scholar 

  30. Janetski ND, Woodburn SI, Woods R (1977) An electrochemical investigation of pyrite flotation and depression. Int J Miner Process 4(3):227–239

    Article  CAS  Google Scholar 

  31. Vaughan DJ, England KER, Kelsall GH, Yin Q (1995) Electrochemical oxidation of chalcopyrite (CuFeS2) and the related metal-enriched derivatives Cu4Fe5S8, Cu9Fe9S16, and Cu9Fe8S16. Am Miner 80:725–731

    Article  CAS  Google Scholar 

  32. Todd EC, Sherman DM, Purton JA (2003) Surface oxidation of chalcopyrite (CuFeS2) under ambient atmospheric and aqueous (pH 2–10) conditions: Cu, Fe L- and O K-edge X-ray spectroscopy. Geochim Cosmochim Acta 67:2137–2146

    Article  CAS  Google Scholar 

  33. Sainctavit P (1989) PhD Thesis, University of Paris VII

    Google Scholar 

  34. Mikhlin Y, Tomashevich Y, Tauson V, Vyalikh D, Molodtsov S, Szargan R (2005) A comparative X-ray absorption near-edge structure study of bornite, Cu5FeS4, and chalcopyrite, CuFeS2. J Electron Spectros Relat Phenomena 142:83–88

    Article  CAS  Google Scholar 

  35. Antonio J, Esparza V (2017) Uso del depresor Orfom D8 en planta de XXXII. Convención Internacional de Minería, Guadalajara 2017

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the help of Dr. Richard LaDouceur, Ethan Baily, Skylar Dickson and Conner Windmueller in running the experiments. We are also thankful to Chevron Philips Chemical Company (CPChem) for sponsoring the research. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official guidelines or policies, either expressed or implied of CPChem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Timbillah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Minerals, Metals & Materials Society

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Timbillah, S., Young, C., Das, A. (2018). A Fundamental Study of Disodium Carboxymethyl Trithiocarbonate (Orfom® D8) in Flotation Separation of Copper-Molybdenum Sulfides. In: Davis, B., et al. Extraction 2018. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-95022-8_247

Download citation

Publish with us

Policies and ethics