Skip to main content

Minimum Polygons for Fixed Visibility VC-Dimension

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10979))

Included in the following conference series:

  • 638 Accesses

Abstract

Motivated by the art gallery problem, the visibility VC-dimension was investigated as a measure for the complexity of polygons in previous work. It was shown that simple polygons exhibit a visibility VC-dimension of at most 6. Hence there are 7 classes of simple polygons w.r.t. their visibility VC-dimension. The polygons in class 0 are exactly the convex polygons. In this paper, we strive for a more profound understanding of polygons in the other classes. First of all, we seek to find minimum polygons for each class, that is, polygons with a minimum number of vertices for each fixed visibility VC-dimension d. Furthermore, we show that for \(d < 4\) the respective minimum polygons exhibit only few different visibility structures, which can be represented by so called visibility strings. On the practical side, we describe an algorithm that computes the visibility VC-dimension of a given polygon efficiently. We use this tool to analyze the distribution of the visibility VC-dimension in different kinds of randomly generated polygons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Eidenbenz, S.: Inapproximability results for guarding polygons without holes. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 427–437. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-49381-6_45

    Chapter  Google Scholar 

  2. Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31(1), 79–113 (2001)

    Article  MathSciNet  Google Scholar 

  3. Ghosh, S.K.: Approximation algorithms for art gallery problems. In: The Proceedings of Canadian Information Processing Society Congress, pp. 429–434 (2010)

    Google Scholar 

  4. Valtr, P.: Guarding galleries where no point sees a small area. Israel J. Math. 104(1), 1–16 (1998)

    Article  MathSciNet  Google Scholar 

  5. Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete Comput. Geom. 14(4), 463–479 (1995)

    Article  MathSciNet  Google Scholar 

  6. Gibson, M., Krohn, E., Wang, Q.: The VC-dimension of visibility on the boundary of a simple polygon. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 541–551. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-0_46

    Chapter  Google Scholar 

  7. Gilbers, A., Klein, R.: A new upper bound for the VC-dimension of visibility regions. In: Proceedings of the Twenty-seventh Annual Symposium on Computational Geometry, SoCG 2011, New York, NY, USA, pp. 380–386. ACM (2011)

    Google Scholar 

  8. Gilbers, A.: VC-dimension of perimeter visibility domains. Inf. Process. Lett. 114(12), 696–699 (2014)

    Article  MathSciNet  Google Scholar 

  9. Gibson, M., Krohn, E., Wang, Q.: On the VC-dimension of visibility in monotone polygons. In: Canadian Conference on Computational Geometry, pp. 85–94 (2014)

    Google Scholar 

  10. Auer, T., Held, M.: Heuristics for the generation of random polygons. In: Proceedings of the 8th Canadian Conference on Computational Geometry, pp. 38–43. Carleton University Press (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moritz Beck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beck, M., Storandt, S. (2018). Minimum Polygons for Fixed Visibility VC-Dimension. In: Iliopoulos, C., Leong, H., Sung, WK. (eds) Combinatorial Algorithms. IWOCA 2018. Lecture Notes in Computer Science(), vol 10979. Springer, Cham. https://doi.org/10.1007/978-3-319-94667-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94667-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94666-5

  • Online ISBN: 978-3-319-94667-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics