Skip to main content

Nonlinear Resonant Ultrasound Spectroscopy: Assessing Global Damage

  • Chapter
  • First Online:
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation

Abstract

The term nonlinear resonant ultrasound spectroscopy (NRUS) was first coined in the 1990s and is one of the earliest nonlinear techniques used to quantify global damage in a sample. This chapter was written as an introduction and overview for the general reader, one interested in learning more about the technique, especially its origins. As rocks are highly nonlinear, it is perhaps not surprising that the study of the nonlinearity of a material full of cracks could be applied to nondestructive testing and applications. Thus, this chapter aims to show that link. The overview of resonance techniques presented in Chap. 1 is here expanded upon and placed in a historical context with an emphasis on the experimental side, including important measurement pitfalls of applying the technique. The fact that the technique was patented early on and that the measurements are complicated by rate effects likely contributed to its lack of general use in the NDE community. After reading this chapter, we think you may agree that the technique is ready for another, closer look.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. TenCate, M. Remillieux, J.D. Montalvo, C. Knapp, T.J. Ulrich, T. Saleh, B. Mitchell, Acoustic Resonance Spectrum Analysis of Rings, Los Alamos Report (available upon request), LA-UR-17-24940 (2017)

    Google Scholar 

  2. A. Migliori, T.W. Darling, Resonant ultrasound spectroscopy for materials studies and non-destructive testing. Ultrasonics 34, 473–476 (1996)

    Article  Google Scholar 

  3. R.A. Guyer, P.A. Johnson, Nonlinear mesoscopic elasticity: Evidence for a new class of materials. Phys. Today 52(4), 30–36 (1999). https://doi.org/10.1063/1.882648

    Article  Google Scholar 

  4. Y. Zheng, R. Gr Maev, I. Yu Solodov, Nonlinear acoustic applications for material characterization: A review. Can. J. Phys. 77, 927–967 (1999)

    Article  Google Scholar 

  5. V.A. Zverev, A.I. Kalachev, Modulation of sound by sound in the interaction of sound waves. Sov. Phys. Acoust. 16, 204–208 (1970)

    Google Scholar 

  6. J. Lighthill, Waves in Fluids (Cambridge University Press, Cambridge, 1978)

    MATH  Google Scholar 

  7. M. F. Hamilton, D. T. Blackstock (eds.), Nonlinear Acoustics (Acoustical Society of America, San Diego, 2008)

    Google Scholar 

  8. A.N. Norris, in Finite-Amplitude Waves in Solids in Nonlinear Acoustics, ed. by M. F. Hamilton, D. T. Blackstock. (Acoustical Society of America, San Diego, 2008)

    Google Scholar 

  9. J.A. TenCate, A.E. Malcolm, X. Feng, M.C. Fehler, The effect of crack orientation on the nonlinear interaction of a P wave with an S wave. Geophys. Res. Lett. 43, 6146–6152 (2016). https://doi.org/10.1002/2016GL069219

    Article  Google Scholar 

  10. R.M. D’Angelo, K.W. Winkler, D.L. Johnson, Three wave mixing test of hyperelasticity in highly nonlinear solids: Sedimentary rocks. J. Acoust. Soc. Am. 123, 622 (2008). https://doi.org/10.1121/1.2821968

    Article  Google Scholar 

  11. J. Riviére, G. Renaud, R.A. Guyer, P.A. Johnson, Pump and probe waves in dynamic acousto-elasticity: Comprehensive description and comparison with nonlinear elastic theories. J. Appl. Phys. 114, 054905 (2013). https://doi.org/10.1063/1.4816395

    Article  Google Scholar 

  12. J.J. Stoker, in Volume II of Pure and Applied Mathematics, a Series of Texts and Monographs, ed. by H. Bohr, R. Courant, J. J. Stoker. Nonlinear vibrations in mechanical and electrical systems (Interscience, France, 1950)

    Google Scholar 

  13. K. Winkler, A. Nur, M. Gladwin, Friction and seismic attenation in rocks. Nature 277, 528–531 (1979)

    Article  Google Scholar 

  14. P.A. Johnson, B. Zinszner, P.N.J. Rasolofosaon, Resonance and elastic nonlinear phenomena in rock. J. Geophys. Res. 101, 11553–11564 (1996)

    Article  Google Scholar 

  15. P.A. Johnson, J.A. TenCate, R.A. Guyer, K.E.A. Van Den Abeele, Resonant Nonlinear Ultrasound Spectroscopy, US Patent 6330827, 18 2001

    Google Scholar 

  16. J.A. TenCate, T.J. Shankland, Slow dynamics in the nonlinear elastic response of Berea sandstone. Geophys. Res. Lett. 23, 3019–3022 (1996)

    Article  Google Scholar 

  17. D. Pasqualini, K. Heitmann, J.A. TenCate, S. Habib, D. Higdon, P.A. Johnson, Nonequilibrium and nonlinear dynamics in Berea and Fontainebleau sandstones: Low-strain regime. J. Geophys. Res. 112, B01204 (2007). https://doi.org/10.1029/2006JB004264

    Article  Google Scholar 

  18. J.A. TenCate, D. Pasqualini, S. Habib, K. Heitmann, D. Higdon, P.A. Johnson, Nonlinear and nonequilibrium dynamics in geomaterials. Phys. Rev. Lett. 93, 065501 (2004). https://doi.org/10.1103/Phys Rev Lett.93.065501

    Article  Google Scholar 

  19. K.E. Claytor, J.R. Koby, J.A. TenCate, Limitations of Preisach theory: Elastic aftereffect, congruence and end point memory. Geophys. Res. Lett. 36, L06304 (2009). https://doi.org/10.1029/2008GL036978

    Article  Google Scholar 

  20. H. Nagaoka, Elastic constants of rocks and the velocity of seismic waves. Publ. Earthquake Invest. Commit. Foreign Lang. 2, 47–67 (1900)

    Google Scholar 

  21. C. Mack, Plastic flow, creep, and stress relaxation. J. Appl. Phys. 17, 1101–1107 (1946)

    Article  Google Scholar 

  22. D.J. Holcomb, Memory, relaxation, and microfracturing in dilatant rock. J. Geophys. Res. 86, 6235–6248 (1981)

    Article  Google Scholar 

  23. B. McKavanagh, F.D. Stacey, Mechanical hysteresis in rocks at low strain amplitudes and seismic frequencies. Phys. Earth Planet. Int. 8, 246–250 (1974)

    Article  Google Scholar 

  24. P.M. Roberts, Conference Presentation, LAUR number (searching…), 2006

    Google Scholar 

  25. G. Renaud, J. Rivière, P.-Y. Le Bas, P.A. Johnson, Hysteretic nonlinear elasticity of Berea sandstone at low-vibrational strain revealed by dynamic acousto-elastic testing. Geophys. Res. Lett. 40, 715–719 (2013). https://doi.org/10.1002/grl.50150

    Article  Google Scholar 

  26. M.C. Remillieux, J.A. TenCate, T.J. Ulrich, H.E. Goodman, Propagation of a finite-amplitude elastic pulse in a bar of Berea sandstone: A detailed look at the mechanisms of classical nonlinearity, hysteresis, and nonequilibrium dynamics. J. Geophys. Res. Solid Earth 122(11), 8892–8909 (2017)

    Article  Google Scholar 

  27. K. Van den Abeele, P.Y. Le Bas, B. Van Damme, T. Katkowski, Quantification of material nonlinearity in relation to microdamage density using nonlinear reverberation spectroscopy: Experimental and theoretical study. J. Acoust. Soc. Am. 126, 963–972 (2009). https://doi.org/10.1121/1.3184583

    Article  Google Scholar 

  28. S.K. Chakrapani, D.J. Barnard, Determination of acoustic nonlinear parameter beta using nonlinear resonance ultrasound spectroscopy: Theory and experiment. J. Acoust. Soc. Am. 141, 919 (2017). https://doi.org/10.1121/1.4976057

    Article  Google Scholar 

  29. J. Riviére, P. Shokouhi, R.A. Guyer, P.A. Johnson, A set of measures for the systematic classification of the nonlinear elastic behavior of disparate rocks. J. Geophys. Res. Solid Earth 120, 1587–1604 (2015). https://doi.org/10.1002/2014JB011718

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the DOE Office of Basic Energy Sciences and by DOE Fossil Energy. We thank Koen E. A. Van den Abeele and Pierre-Yves Le Bas for data use and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. TenCate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

TenCate, J.A., Johnson, P.A. (2019). Nonlinear Resonant Ultrasound Spectroscopy: Assessing Global Damage. In: Kundu, T. (eds) Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-94476-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94476-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94474-6

  • Online ISBN: 978-3-319-94476-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics