Skip to main content

Anharmonic Interactions of Probing Ultrasonic Waves with Applied Loads Including Applications Suitable for Structural Health Monitoring

  • Chapter
  • First Online:
Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation
  • 1668 Accesses

Abstract

The historical background and the theoretical basis of the monitoring of stress and strain by acoustic waves is presented. Discussed are furthermore the results of digital simulations and the experimental developments and instrumental techniques needed to monitor the stress–strain relation present in the observed samples solely with the aid of traveling acoustic waves. The obtained experimental results are compared to conventional detection of the stress–strain relation performed synchronous to the developed ultrasonic monitoring for different metallic samples. Applications related to structural health monitoring of aircraft components by guided ultrasonic waves are exemplified to demonstrate the range of applications of the techniques developed for the presented monitoring scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H.O. Berktay, Possible exploitation of nonlinear acoustics in underwater transmitting applications. J. Sound Vib. 2(4), 435–461 (1965). https://doi.org/10.1016/0022-460X(65)90122-7

    Article  Google Scholar 

  2. M.F. Hamilton, D.T. Blackstock, Nonlinear Acoustics (Acoustical Society of America, Melville, 2008). ISBN 0-12-321860-8

    Google Scholar 

  3. W. Grill, K. Hillmann, K.U. WĂĽrz, Joachim Wesner, in Scanning Acoustic Microscopy with Phase Contrast. eds. By A. Briggs, W. Arnold. Advances in Acoustic Microscopy, vol. 2 (Plenum Press, New York. 1996). p. 167

    Google Scholar 

  4. K.-U. Würz, J. Wesner, K. Hillmann, W. Grill, Determination of elastic constants using a scanning acoustic microscope. Z. Phys. B Condens. Matter 97(4), 487–492 (1995). https://doi.org/10.1007/BF01322428

    Article  Google Scholar 

  5. T. Schneider, Nonlinear Optics in Telecommunications, in Advanced Texts in Physics. Four-Wave-Mixing (FWM), (Springer, Berlin, 2004), pp. 167–200

    Google Scholar 

  6. H.J. Simpson, P.L. Marston, in Parametric Layers, Four-Wave Mixing, and Wave-Front Reversal. eds. By M.F. Hamilton, D.T. Blackstock. Nonlinear Acoustics. (ASA, Austin, 2008); originally published in 1998

    Google Scholar 

  7. Michele Zaffalon, http://www.zhinst.com/blogs/michele/files/downloads/2012/12/AMFM.pdf, March 2017; contact via: michele.zaffalon@zhinst.com

  8. T.J. Kim, W. Grill, Determination of the velocity of ultrasound by short pulse switched sinusoidal excitation and phase-sensitive detection by a computer-controlled pulse-echo system. Ultrasonics 36(1–5), 233–238 (1998)

    Article  Google Scholar 

  9. R. Ellwood, T. Stratoudaki, S.D. Sharples, M. Clark, M.G. Somekh, Determination of the acoustoelastic coefficient for surface acoustic waves using dynamic acoustoelastography: an alternative to static strain. J. Acoust. Soc. Am. 135(3), 1064–1070 (2014). https://doi.org/10.1121/1.4864308

    Article  Google Scholar 

  10. W.H. Klever, J.W. Wilhelm, Ultrasonic bolt tension tester, U.S. Patent 3,306,100. Submitted: 25 Feb 1964

    Google Scholar 

  11. A.M. Nicolson, Piezo-stress-sensor, US. Patent 2137852. Submitted: 8 Jan 1924

    Google Scholar 

  12. K.S. Tarar, M. Pluta, U. Amjad, W. Grill, Lattice dynamics approach to determine the dependence of the time-of-flight of transversal polarized acoustic waves on external stress. Proc. SPIE 7984, 79842R (2011)

    Article  Google Scholar 

  13. K. Hillmann, W. Grill, J. Bereiter-Hahn, Determination of ultrasonic attenuation in small samples of solid material by scanning acoustic microscopy with phase contrast. J. Alloys Compd. 211/212, 625–627 (1994)

    Article  Google Scholar 

  14. D.K. Ferry, in Lattice Dynamics. Semiconductors Bonds and Bands (IOP Publishing Ltd, Bristol, 2013). pp. 3-1–3-32

    Google Scholar 

  15. J.E. Lennard-Jones, On the determination of molecular fields. Proc. R. Soc. Lond. A 106(738), 463–477 (1924). https://doi.org/10.1098/rspa.1924.0082

    Article  Google Scholar 

  16. P. Morse, H. Feshbach, Methods of Theoretical Physics, vol. 1, in International Series in Pure and Applied Physics, (McGraw-Hill, Boston, 1953)

    Google Scholar 

  17. Z. Caamaño-Withall, P. Krysl, Taut string model: getting the right energy versus getting the energy the right way. World J. Mech. 6(2), 24–33 (2016)

    Article  Google Scholar 

  18. K.S. Tarar, R. Meier, U. Amjad, W. Grill, Stress detection with guided acoustic ultrasonic waves by non-linear elastic and geometric effects. Proc. SPIE 2009, 729518 (2009)

    Article  Google Scholar 

  19. T.C.A. Molteno, N.B. Tufillaro, An experimental investigation into the dynamics of a string. Am. J. Phys. 72(9), 1157–1169 (2004)

    Article  Google Scholar 

  20. A. Abdelrahman, U. Amjad, D. Jha, K.S. Tarar, W. Grill, Zero order mode selective excitation and highly resolved observations of Lamb waves. Proc. SPIE 7984, 798413 (2011). https://doi.org/10.1117/12.880602

    Article  Google Scholar 

  21. J.Y. Grill, Ultrasonic detection of stress and strain in materials under load. Diploma Thesis, RWTH-Aachen, 2014

    Google Scholar 

  22. K.S. Tarar, R. Meier, E. Twerdowski, R. Wannemacher, W. Grill, A differential method for the determination of the time-of-flight for ultrasound under pulsed wide band excitation including chirped signals. Proc. SPIE 2008, 6935 (2008). https://doi.org/10.1117/12.776158

    Article  Google Scholar 

  23. G. Adlhoch, W. Grill, R. Kociorski. A method for determining the clamping force of linking units by means of ultrasonic agitation. Patent DE102004038638B3, 9 Aug 2004

    Google Scholar 

  24. W. Grill, R. Kociorski, Method for correcting the influence of signal transmission lines on changes of signal transit times when conducting ultrasonic measurements. Patent WO2005121773A1 (CA2569839A1, DE102004027919B3, EP1754051A1, EP1754051B1), 9 June 2004

    Google Scholar 

  25. M. Niksch, W. Grill, Numerical calculations of ultrasonic echo patterns and implications on the determination of the velocity of sound. Acoustica 64, 26 (1987)

    Google Scholar 

  26. G. Birkelbach, W. Grill, S. Kuznetsov, V. Pavelko, Integral structural health and load monitoring of a helicopter tail boom manufactured from aluminum sheet metal with support from frames and stringers by guided ultrasonic waves. Proc. SPIE 2012, 8348 (2012)

    Google Scholar 

  27. M. Fink, Time reversed acoustics. Phys. Today 50, 64–40 (1997)

    Article  Google Scholar 

  28. K. Fossheim, in Nonequilibrium Phonon Dynamics, ed. By W.E. Bron. Phonon Echoes, Polarization Echoes, and Acoustic Phase Conjugation in Solids, vol. 124. NATO ASI Series (Springer, Boston, 1985). pp. 277–312

    Google Scholar 

  29. V. Jeanclaude, C. Fressengeas, Le Chatelier effect. Propagating pattern selection in the Portevin. Scr. Metall. Mater. 29, 9 (1993)

    Article  Google Scholar 

  30. G. Birkelbach, I.J. Aldave, I. LĂłpez, W. Grill, Integral ultrasonic structural health and load monitoring on a fiber reinforced polymer-based composite helicopter tail boom. Proc. SPIE 2012, 8348 (2012). https://doi.org/10.1117/12.914968

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Grill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grill, J., Grill, W. (2019). Anharmonic Interactions of Probing Ultrasonic Waves with Applied Loads Including Applications Suitable for Structural Health Monitoring. In: Kundu, T. (eds) Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-94476-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94476-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94474-6

  • Online ISBN: 978-3-319-94476-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics