Skip to main content

Health Economics in Blood Safety

  • Chapter
  • First Online:
Blood Safety

Abstract

Health economic analyses measure the cost of illness, the cost of interventions to stop or prevent disease, and the health benefits which result from use of interventions. Methods relevant to blood safety are reviewed because assessing the health economics of microbial threats to transfusion is an important part of policy development. Both budget impact analyses, an assessment of cost to implement as well as any potential savings achieved in averted healthcare expenditures, and cost-effectiveness analyses which directly assess the health benefits achieved for the transfused population relative to costs, contribute to evidenced-based policy. As instructive examples, results from published health economic studies are provided for Zika virus, HTLV, Babesia microti, HIV, HBV, and HCV. The studies show high variability in the cost-effectiveness of specific interventions for microbial threats to blood safety. Available health economic data for pathogen inactivation/reduction technologies are also reported, where budget impact rather than cost-effectiveness may currently be the most important impediment to broader adoption in many jurisdictions. Overall, interventions for microbial threats in the blood supply are less cost-effective (have higher cost per effectiveness achieved) than many other areas of healthcare because of the expectation for a high level of safety and prevention of transmission by transfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allain JP, Stramer SL, Carneiro-Proietti AB, Martins ML, Lopes da Silva SN, Ribeiro M, et al. transfusion-transmitted infectious diseases. Biologicals. 2009;37(2):71–7. Epub 2009/02/24.

    Article  PubMed  Google Scholar 

  2. Alter HJ, Klein HG. The hazards of blood transfusion in historical perspective. Blood. 2008;112(7):2617–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Custer B, Janssen MP. Alliance of blood operators risk-based decision-making I. Health economics and outcomes methods in risk-based decision-making for blood safety. Transfusion. 2015;55(8):2039–47. Epub 2015/04/10.

    Article  PubMed  Google Scholar 

  4. Johannesson M. Theory and methods of economic evaluation of health care. Dev Health Econ Public Policy. 1996;4:1–245. Epub 1995/12/09.

    CAS  PubMed  Google Scholar 

  5. Liljas B. On the welfare theoretic foundation of cost-effectiveness analysis-the case when survival is not affected. Eur J Health Econ. 2010;11(1):5–13. Epub 2009/03/04.

    Article  PubMed  Google Scholar 

  6. Cookson R, McCabe C, Tsuchiya A. Public healthcare resource allocation and the rule of rescue. J Med Ethics. 2008;34(7):540–4. Epub 2008/07/02.

    Article  CAS  PubMed  Google Scholar 

  7. Trueman P, Drummond M, Hutton J. Developing guidance for budget impact analysis. PharmacoEconomics. 2001;19(6):609–21. Epub 2001/07/18.

    Article  CAS  PubMed  Google Scholar 

  8. Leach Bennett J, Blajchman MA, Delage G, Fearon M, Devine D. Proceedings of a consensus conference: risk-based decision making for blood safety. Transfus Med Rev. 2011;25(4):267–92. Epub 2011/07/19.

    Article  PubMed  Google Scholar 

  9. Stein J, Besley J, Brook C, Hamill M, Klein E, Krewski D, et al. Risk-based decision-making for blood safety: preliminary report of a consensus conference. Vox Sang. 2011;101(4):277–81. Epub 2011/07/26.

    Article  CAS  PubMed  Google Scholar 

  10. International Society for Pharmaceutical Outcomes Research (ISPOR). ISPOR Good Practices for Outcomes Research Index. Lawrenceville, NJ: ISPOR; 2017 [cited 2017 12/31/2017]; Available from: https://www.ispor.org/.

  11. Tarricone R. Cost-of-illness analysis. What room in health economics? Health Policy. 2006;77(1):51–63. Epub 2005/09/06.

    Article  PubMed  Google Scholar 

  12. Clabaugh G, Ward MM. Cost-of-illness studies in the United States: a systematic review of methodologies used for direct cost. Value in Health: The Journal of the International Society for Pharmacoeconomics and Outcomes Research. 2008;11(1):13–21. Epub 2008/02/02.

    Article  Google Scholar 

  13. Heijink R, Noethen M, Renaud T, Koopmanschap M, Polder J. Cost of illness: an international comparison. Australia, Canada, France, Germany and the Netherlands. Health Policy. 2008;88(1):49–61. Epub 2008/04/15.

    Article  PubMed  Google Scholar 

  14. El Saadany S, Coyle D, Giulivi A, Afzal M. Economic burden of hepatitis C in Canada and the potential impact of prevention. Results from a disease model. Eur J Health Econ. 2005;6(2):159–65. Epub 2005/03/12.

    Article  PubMed  Google Scholar 

  15. Freedberg KA, Scharfstein JA, Seage GR 3rd, Losina E, Weinstein MC, Craven DE, et al. The cost-effectiveness of preventing AIDS-related opportunistic infections. JAMA. 1998;279(2):130–6. Epub 1998/01/24.

    Article  CAS  PubMed  Google Scholar 

  16. Mauskopf JA, Sullivan SD, Annemans L, Caro J, Mullins CD, Nuijten M, et al. Principles of good practice for budget impact analysis: report of the ISPOR task force on good research practices--budget impact analysis. Value in Health: The Journal of the International Society for Pharmacoeconomics and Outcomes Research. 2007;10(5):336–47. Epub 2007/09/25.

    Article  Google Scholar 

  17. US Deparment of Veterans Affairs. Budget Impact Analysis. Washington, DC: U.S. Department of Health and Human Services; 2016 [updated 2/15/2016; cited 2017 12/27/2017]; Available from: https://www.herc.research.va.gov/include/page.asp?id=budget-impactanalysis.

  18. Custer B, Hoch JS. Cost-effectiveness analysis: what it really means for transfusion medicine decision making. Transfus Med Rev. 2009;23(1):1–12. Epub 2008/12/06.

    Article  PubMed  Google Scholar 

  19. Kacker S, Frick KD, Tobian AA. The costs of transfusion: economic evaluations in transfusion medicine, part 1. Transfusion. 2013;53(7):1383–5. Epub 2013/04/09.

    Article  PubMed  Google Scholar 

  20. Kacker S, Frick KD, Tobian AA. Establishing a framework: economic evaluations in transfusion medicine, part 2. Transfusion. 2013;53(8):1634–6. Epub 2013/04/09.

    Article  PubMed  Google Scholar 

  21. Kacker S, Frick KD, Tobian AA. Constructing a model: economic evaluations in transfusion medicine, Part 3. Transfusion. 2013;53:1885–7. Epub 2013/04/09.

    Article  PubMed  Google Scholar 

  22. Kacker S, Frick KD, Tobian AA. Data and interpretation: economic evaluations in transfusion medicine, Part 4. Transfusion. 2013;53:2130–3. Epub 2013/04/09.

    PubMed  Google Scholar 

  23. van Hulst M, de Wolf JT, Staginnus U, Ruitenberg EJ, Postma MJ. Pharmaco-economics of blood transfusion safety: review of the available evidence. Vox Sang. 2002;83(2):146–55. Epub 2002/08/31.

    Article  CAS  PubMed  Google Scholar 

  24. Custer B. Economic analyses of blood safety and transfusion medicine interventions: a systematic review. Transfus Med Rev. 2004;18(2):127–43. Epub 2004/04/07.

    Article  PubMed  Google Scholar 

  25. van Hulst M, Smit Sibinga CT, Postma MJ. Health economics of blood transfusion safety--focus on sub-Saharan Africa. Biologicals. 2010;38(1):53–8. Epub 2009/12/22.

    Article  PubMed  Google Scholar 

  26. Dolan P, Edlin R. Is it really possible to build a bridge between cost-benefit analysis and cost-effectiveness analysis? J Health Econ. 2002;21(5):827–43. Epub 2002/09/28.

    Article  PubMed  Google Scholar 

  27. Eisenstaedt RS, Getzen TE. Screening blood donors for human immunodeficiency virus antibody: cost-benefit analysis. Am J Public Health. 1988;78(4):450–4. Epub 1988/04/01.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fischinger JM, Stephan B, Wasserscheid K, Eichler H, Gartner BC. A cost-benefit analysis of blood donor vaccination as an alternative to additional DNA testing for reducing transfusion transmission of hepatitis B virus. Vaccine. 2010;28(49.):7797-802. Epub 2010/09/30.):7797.

    Article  CAS  PubMed  Google Scholar 

  29. Gelles GM. Costs and benefits of HIV-1 antibody testing of donated blood. J Policy Anal Manage. 1993;12(3):512–31. Epub 1994/02/02.

    Article  CAS  PubMed  Google Scholar 

  30. Hornbrook MC, Dodd RY, Jacobs P, Friedman LI, Sherman KE. Reducing the incidence of non-A, non-B post-transfusion hepatitis by testing donor blood for alanine aminotransferase: economic considerations. N Engl J Med. 1982;307(21):1315–21. Epub 1982/11/18.

    Article  CAS  PubMed  Google Scholar 

  31. Cost-Effectiveness Analysis Registry. Catalog of Utility Weights. Boston, MA. Center for the Evaluation of Value and Risk in Health, Institute for Clincal Research and Health Policy Studies, Tufts Medical Center; 2013 [cited 2017 12/31/2017]; Available from: http://healtheconomics.tuftsmedicalcenter.org/cear4/SearchingtheCEARegistry/SearchtheCEARegistry.aspx.

  32. Liljas B, Lindgren B. On individual preferences and aggregation in economic evaluation in healthcare. PharmacoEconomics. 2001;19(4):323–35. Epub 2001/06/01.

    Article  CAS  PubMed  Google Scholar 

  33. World Health Organization. Metrics: Disability-Adjusted Life Year (DALY) - Quantifying the Burden of Disease from mortality and morbidity; 2018 [cited 2018 1/2/2018]; Available from: http://www.who.int/healthinfo/global_burden_disease/metrics_daly/en/.

  34. Sullivan SD, Mauskopf JA, Augustovski F, Jaime Caro J, Lee KM, Minchin M, et al. Budget impact analysis-principles of good practice: report of the ISPOR 2012 budget impact analysis good practice II task force. Value in Health: The Journal of the International Society for Pharmacoeconomics and Outcomes Research. 2014;17(1):5–14. Epub 2014/01/21.

    Article  Google Scholar 

  35. Aledort LM, Broder M, Busch MP, Custer B, Fergusson DA, Goodnough LT, Hendler RS, Hofmann A, Klein HG, Louie JE, Page PL, Sazama K, Shander A, Shulman IA, Spence RK, Sullivan MT, Thurer RL. The cost of blood: multidisciplinary consensus conference for a standard methodology. Transfus Med Rev. 2005;19(1):66–78. Epub 2005/04/15.

    Article  Google Scholar 

  36. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. Consolidated health economic evaluation reporting standards (CHEERS)--explanation and elaboration: a report of the ISPOR health economic evaluation publication guidelines good reporting practices task force. Value in Health: The Journal of the International Society for Pharmacoeconomics and Outcomes Research. 2013;16(2):231–50. Epub 2013/03/30.

    Article  Google Scholar 

  37. Drummond M, Tarricone R, Torbica A. Assessing the added value of health technologies: reconciling different perspectives. Value in Health: The Journal of the International Society for Pharmacoeconomics and Outcomes Research. 2013;16(1 Suppl):S7–13. Epub 2013/01/18.

    Article  Google Scholar 

  38. Drummond MF, Sculpher MJ, Claxton K, Stoddart GL, Torrance GW. Methods for the economic evaluation of health care Programmes. 4th ed. Oxford: Oxford University Press; 2015.

    Google Scholar 

  39. Bai G, Anderson GF. Extreme markup: the fifty US hospitals with the highest charge-to-cost ratios. Health Aff (Millwood). 2015;34(6):922–8. Epub 2015/06/10.

    Article  Google Scholar 

  40. Weinstein MC, Siegel JE, Gold MR, Kamlet MS, Russell LB. Recommendations of the panel on cost-effectiveness in health and medicine. JAMA. 1996;276(15):1253–8.

    Article  CAS  PubMed  Google Scholar 

  41. National Institute for Health and Care Excellence (NICE). Technology appraisal guidance. [cited 2017 12/31/2017]; Available from: https://www.nice.org.uk/about/what-we-do/our-programmes/nice-guidance/nice-technologyappraisal-guidance.

  42. Parkinson B, de Abreu Lourenço R. Discounting in Economic Evaluations in Health Care: A Brief Review. Centre for Health Economics Research and Evaluation (CHERE) & Cancer Research Economics Support Team (CREST); 2015 [cited 2017 12/30/2017]. Available from: http://www.crest.uts.edu.au/pdfs/FactSheet_Discounting.pdf.

  43. Klok RM, Postma MJ. Four quadrants of the cost-effectiveness plane: some considerations on the south-west quadrant. Expert Rev Pharmacoecon Outcomes Res. 2004;4(6):599–601. Epub 2004/12/01.

    Article  PubMed  Google Scholar 

  44. World Health Organization. CHOosing Interventions that are Cost Effective (WHO-CHOICE) 2007 [cited 2017 12/02/2017]; Available from: http://www.who.int/choice/country/pol/cost/en/index.html.

  45. Bertram MY, Lauer JA, De Joncheere K, Edejer T, Hutubessy R, Kienya MP, et al. Cost–effectiveness thresholds: pros and cons. Bull World Health Organ. 2016;94:925.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Simoens S. Health economic assessment: a methodological primer. Int J Environ Res Public Health. 2009;6(12):2950–66. Epub 2010/01/06.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Shiroiwa T, Sung YK, Fukuda T, Lang HC, Bae SC, Tsutani K. International survey on willingness-to-pay (WTP) for one additional QALY gained: what is the threshold of cost effectiveness? Health Econ. 2010;19(4):422–37. Epub 2009/04/22.

    Article  PubMed  Google Scholar 

  48. Briggs AH, Weinstein MC, Fenwick EA, Karnon J, Sculpher MJ, Paltiel AD. Model parameter estimation and uncertainty analysis: a report of the ISPOR-SMDM modeling good research practices task force working Group-6. Med Decis Mak. 2012;32(5):722–32Epub 2012/09/20.

    Article  Google Scholar 

  49. Briggs AH, Weinstein MC, Fenwick EA, Karnon J, Sculpher MJ, Paltiel AD. Model parameter estimation and uncertainty: a report of the ISPOR-SMDM modeling good research practices task force--6. Value in health: The Journal of the International Society for Pharmacoeconomics and Outcomes Research. 2012;15(6):835–42. Epub 2012/09/25.

    Article  Google Scholar 

  50. Cost-Effectiveness Acceptability Curve (CEAC) [online]. (2016). York, England; York Health Economics Consortium; 2016 [cited 2018 1/5/2018]; Available from: http://www.yhec.co.uk/glossary/cost-effectiveness-acceptability-curve-ceac/.

  51. Fenwick E, O'Brien BJ, Briggs A. Cost-effectiveness acceptability curves--facts, fallacies and frequently asked questions. Health Econ. 2004;13(5):405–15. Epub 2004/05/06.

    Article  PubMed  Google Scholar 

  52. Al MJ. Cost-effectiveness acceptability curves revisited. PharmacoEconomics. 2013;31(2.):Epub 2013/01/19.):93–100.

    Article  PubMed  Google Scholar 

  53. Husereau D, Drummond M, Petrou S, Carswell C, Moher D, Greenberg D, et al. Consolidated health economic evaluation reporting standards (CHEERS) statement. Int J Technol Assess Health Care. 2013;29(2):117–22. Epub 2013/04/17.

    Article  PubMed  Google Scholar 

  54. Eddy DM, Hollingworth W, Caro JJ, Tsevat J, McDonald KM, Wong JB. Model transparency and validation: a report of the ISPOR-SMDM modeling good research practices task Force-7. Med Decis Mak. 2012;32(5):733–43. Epub 2012/09/20.

    Article  Google Scholar 

  55. Edgren G, Kamper-Jorgensen M, Eloranta S, Rostgaard K, Custer B, Ullum H, et al. Duration of red blood cell storage and survival of transfused patients (CME). Transfusion. 2010;50(6.):Epub 2010/02/18.):1185–95.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Borkent-Raven BA, Janssen MP, van der Poel CL, Schaasberg WP, Bonsel GJ, van Hout BA. Survival after transfusion in the Netherlands. Vox Sang. 2011;100(2):196–203. Epub 2010/08/24.

    Article  CAS  PubMed  Google Scholar 

  57. Kleinman S, Marshall D, AuBuchon J, Patton M. Survival after transfusion as assessed in a large multistate US cohort. Transfusion. 2004;44(3):386–90. Epub 2004/03/05.

    Article  PubMed  Google Scholar 

  58. Gauvin F, Champagne MA, Robillard P, Le Cruguel JP, Lapointe H, Hume H. Long-term survival rate of pediatric patients after blood transfusion. Transfusion. 2008;48(5):801–8. Epub 2008/01/23.

    Article  PubMed  Google Scholar 

  59. Vamvakas EC, Taswell HF. Long-term survival after blood transfusion. Transfusion. 1994;34(6):471–7.

    Article  CAS  PubMed  Google Scholar 

  60. Kamper-Jorgensen M, Ahlgren M, Rostgaard K, Melbye M, Edgren G, Nyren O, et al. Survival after blood transfusion. Transfusion. 2008;48(12):2577–84. Epub 2008/08/05.

    Article  PubMed  Google Scholar 

  61. Dorsey KA, Moritz ED. Notari EPt, Schonberger LB, Dodd RY. Survival of blood transfusion recipients identified by a look-back investigation. Blood transfusion = Trasfusione del sangue. 2014;12(1):67–72. Epub 2013/12/18.

    PubMed  PubMed Central  Google Scholar 

  62. Karafin MS, Bruhn R, Westlake M, Sullivan MT, Bialkowski W, Edgren G, et al. Demographic and epidemiologic characterization of transfusion recipients from four US regions: evidence from the REDS-III recipient database. Transfusion. 2017;57(12):2903–13. Epub 2017/10/27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Seed CR, Kiely P, Hoad VC, Keller AJ. Refining the risk estimate for transfusion-transmission of occult hepatitis B virus. Vox Sang. 2017;112(1):3–8. Epub 2016/08/27.

    Article  CAS  PubMed  Google Scholar 

  64. Weusten JJ, van Drimmelen HA, Lelie PN. Mathematic modeling of the risk of HBV, HCV, and HIV transmission by window-phase donations not detected by NAT. Transfusion. 2002;42(5):537–48. Epub 2002/06/27.

    Article  PubMed  Google Scholar 

  65. Busch M, Walderhaug M, Custer B, Allain JP, Reddy R, McDonough B. Risk assessment and cost-effectiveness/utility analysis. Biologicals. 2009;37(2):78–87. Epub 2009/02/27.

    Article  PubMed  Google Scholar 

  66. Colon-Gonzalez FJ, Peres CA, Steiner Sao Bernardo C, Hunter PR, Lake IR. After the epidemic: Zika virus projections for Latin America and the Caribbean. PLoS Negl Trop Dis. 2017;11(11.):Epub 2017/11/02.):e0006007.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lanteri MC, Kleinman SH, Glynn SA, Musso D, Keith Hoots W, Custer BS, et al. Zika virus: a new threat to the safety of the blood supply with worldwide impact and implications. Transfusion. 2016;56(7):1907–14. Epub 2016/06/11.

    Article  PubMed  Google Scholar 

  68. Lee BY, Alfaro-Murillo JA, Parpia AS, Asti L, Wedlock PT, Hotez PJ, et al. The potential economic burden of Zika in the continental United States. PLoS Negl Trop Dis. 2017;11(4.):Epub 2017/04/28.):e0005531.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Alfaro-Murillo JA, Parpia AS, Fitzpatrick MC, Tamagnan JA, Medlock J, Ndeffo-Mbah ML, et al. A cost-effectiveness tool for informing policies on Zika virus control. PLoS Negl Trop Dis. 2016;10(5.):Epub 2016/05/21.):e0004743.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Ellingson KD, Sapiano MRP, Haass KA, Savinkina AA, Baker ML, Henry RA, et al. Cost projections for implementation of safety interventions to prevent transfusion-transmitted Zika virus infection in the United States. Transfusion. 2017;57(Suppl 2):1625–33. Epub 2017/06/08.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Styles CE, Seed CR, Hoad VC, Gaudieri S, Keller AJ. Reconsideration of blood donation testing strategy for human T-cell lymphotropic virus in Australia. Vox Sang. 2017;112(8):723–32. Epub 2017/09/30.

    Article  CAS  PubMed  Google Scholar 

  72. Marano G, Vaglio S, Pupella S, Facco G, Catalano L, Piccinini V, et al. Human T-lymphotropic virus and transfusion safety: does one size fit all? Transfusion. 2016;56(1.):Epub 2015/09/22.):249–60.

    Article  PubMed  Google Scholar 

  73. Borkent-Raven BA, Janssen MP, van der Poel CL, Bonsel GJ, van Hout BA. Cost-effectiveness of additional blood screening tests in the Netherlands. Transfusion. 2012;52(3):478–88. Epub 2011/09/02.

    Article  PubMed  Google Scholar 

  74. Sailly JC, Lebrun T, Coudeville L. Cost-effective approach to the screening of HIV, HBV, HCV, HTLV in blood donors in France. Rev Epidemiol Sante Publique. 1997;45(2):131–41. Epub 1997/04/01. Approche cout-efficacite du depistage des virus VIH, VHB, VHC, HTLV chez les donneurs de sang en France.

    CAS  PubMed  Google Scholar 

  75. Stigum H, Magnus P, Samdal HH, Nord E. Human T-cell lymphotropic virus testing of blood donors in Norway: a cost-effect model. Int J Epidemiol. 2000;29(6.):Epub 2000/12/02.):1076–84.

    Article  CAS  PubMed  Google Scholar 

  76. Levin AE, Krause PJ. Transfusion-transmitted babesiosis: is it time to screen the blood supply? Curr Opin Hematol. 2016;23(6):573–80. Epub 2016/10/18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Stramer SL, Hollinger FB, Katz LM, Kleinman S, Metzel PS, Gregory KR, et al. Emerging infectious disease agents and their potential threat to transfusion safety. Transfusion. 2009;49(Suppl 2):1S–29S. Epub 2009/08/19.

    Article  PubMed  Google Scholar 

  78. Bloch EM, Herwaldt BL, Leiby DA, Shaieb A, Herron RM, Chervenak M, et al. The third described case of transfusion-transmitted Babesia duncani. Transfusion. 2012;52(7):1517–22. Epub 2011/12/16.

    Article  PubMed  Google Scholar 

  79. Herwaldt BL, Linden JV, Bosserman E, Young C, Olkowska D, Wilson M. Transfusion-associated babesiosis in the United States: a description of cases. Ann Intern Med. 2011;155(8):509–19. Epub 2011/09/07.

    Article  PubMed  Google Scholar 

  80. Leiby DA. Transfusion-transmitted Babesia spp.: bull's-eye on Babesia microti. Clin Microbiol Rev. 2011;24(1):14–28. Epub 2011/01/15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Simon MS, Leff JA, Pandya A, Cushing M, Shaz BH, Calfee DP, et al. Cost-effectiveness of blood donor screening for Babesia microti in endemic regions of the United States. Transfusion. 2014;54(3 Pt 2):889–99. Epub 2013/11/21.

    Article  PubMed  Google Scholar 

  82. Goodell AJ, Bloch EM, Krause PJ, Custer B. Costs, consequences, and cost-effectiveness of strategies for Babesia microti donor screening of the US blood supply. Transfusion. 2014;54(9):2245–57. Epub 2014/08/12.

    Article  PubMed  Google Scholar 

  83. Bish EK, Moritz ED, El-Amine H, Bish DR, Stramer SL. Cost-effectiveness of Babesia microti antibody and nucleic acid blood donation screening using results from prospective investigational studies. Transfusion. 2015;55(9.):Epub 2015/05/23.):2256–71.

    Article  PubMed  Google Scholar 

  84. Criado-Fornelio A. A review of nucleic-acid-based diagnostic tests for Babesia and Theileria, with emphasis on bovine piroplasms. Parassitologia. 2007;49(Suppl 1):39–44. Epub 2007/08/19.

    PubMed  Google Scholar 

  85. Moritz ED, Winton CS, Tonnetti L, Townsend RL, Berardi VP, Hewins ME, et al. Screening for Babesia microti in the U.S. blood supply. N Engl J Med. 2016;375(23):2236–45. Epub 2016/12/14.

    Article  PubMed  Google Scholar 

  86. Jajosky RP, Jajosky AN. Is babesiosis the most common transfusion transmitted infection in the United States of America? The answer is not simple! Transfusion and Apheresis Science: Official Journal of the World Apheresis Association: Official Journal of the European Society for Haemapheresis. 2017;56(4):609–10. Epub 2017/09/05.

    Google Scholar 

  87. Kleinman SH, Lelie N, Busch MP. Infectivity of human immunodeficiency virus-1, hepatitis C virus, and hepatitis B virus and risk of transmission by transfusion. Transfusion. 2009;49(11):2454–89. Epub 2009/08/18.

    Article  CAS  PubMed  Google Scholar 

  88. Zou S, Stramer SL, Dodd RY. Donor testing and risk: current prevalence, incidence, and residual risk of transfusion-transmissible agents in US allogeneic donations. Transfus Med Rev. 2012;26(2):119–28. Epub 2011/08/30.

    Article  PubMed  Google Scholar 

  89. Stramer SL, Krysztof DE, Brodsky JP, Fickett TA, Reynolds B, Dodd RY, et al. Comparative analysis of triplex nucleic acid test assays in United States blood donors. Transfusion. 2013;53(10 Pt 2):2525–37. Epub 2013/04/05.

    Article  CAS  PubMed  Google Scholar 

  90. Lelie N, Bruhn R, Busch M, Vermeulen M, Tsoi WC, Kleinman S, et al. Detection of different categories of hepatitis B virus (HBV) infection in a multi-regional study comparing the clinical sensitivity of hepatitis B surface antigen and HBV-DNA testing. Transfusion. 2017;57(1):24–35. Epub 2016/09/28.

    Article  CAS  PubMed  Google Scholar 

  91. Bruhn R, Lelie N, Busch M, Kleinman S, International NATSG. Relative efficacy of nucleic acid amplification testing and serologic screening in preventing hepatitis C virus transmission risk in seven international regions. Transfusion. 2015;55(6):1195–205. Epub 2015/03/03.

    Article  CAS  PubMed  Google Scholar 

  92. Bruhn R, Lelie N, Custer B, Busch M, Kleinman S, International NATSG. Prevalence of human immunodeficiency virus RNA and antibody in first-time, lapsed, and repeat blood donations across five international regions and relative efficacy of alternative screening scenarios. Transfusion. 2013;53(10 Pt 2):2399–412. Epub 2013/06/21.

    Article  PubMed  Google Scholar 

  93. El Ekiaby M, Moftah F, Goubran H, van Drimmelen H, LaPerche S, Kleinman S, et al. Viremia levels in hepatitis C infection among Egyptian blood donors and implications for transmission risk with different screening scenarios. Transfusion. 2015;55(6):1186–94. Epub 2015/03/15.

    Article  PubMed  CAS  Google Scholar 

  94. van Hulst M, Hubben GA, Sagoe KW, Promwong C, Permpikul P, Fongsatitkul L, et al. Web interface-supported transmission risk assessment and cost-effectiveness analysis of postdonation screening: a global model applied to Ghana, Thailand. and the Netherlands Transfusion. 2009;49(12):2729–42.

    Article  PubMed  Google Scholar 

  95. Custer B, Janssen MP, Hubben G, Vermeulen M, van Hulst M. Development of a web-based application and multicountry analysis framework for assessing interdicted infections and cost-utility of screening donated blood for HIV. HCV and HBV Vox Sanguinis. 2017;112(6):526–34. Epub 2017/06/10.

    Article  CAS  PubMed  Google Scholar 

  96. Janssen MP, van Hulst M, Custer B, Economics ARH, Outcomes Working G. Collaborators. An assessment of differences in costs and health benefits of serology and NAT screening of donations for blood transfusion in different western countries. Vox Sang. 2017;112(6):518–25. Epub 2017/06/24.

    Article  CAS  PubMed  Google Scholar 

  97. Custer B, Busch MP, Marfin AA, Petersen LR. The cost-effectiveness of screening the U.S. blood supply for West Nile virus. Ann Intern Med. 2005;143(7):486–92. Epub 2005/10/06.

    Article  PubMed  Google Scholar 

  98. Kleinman S, Stassinopoulos A. Risks associated with red blood cell transfusions: potential benefits from application of pathogen inactivation. Transfusion. 2015;55(12.):Epub 2015/08/26.):2983–3000.

    Article  PubMed  PubMed Central  Google Scholar 

  99. de Sousa G, Seghatchian J. Highlights of PBTI Coimbra conference on PRT of Plasma & Current Opinions on pathogen reduction treatment of blood components. Transfusion and Apheresis Science: Official Journal of the World Apheresis Association: Official Journal of the European Society for Haemapheresis. 2015;52(2):228–32. Epub 2015/03/15.

    Google Scholar 

  100. Seltsam A, Muller TH. Update on the use of pathogen-reduced human plasma and platelet concentrates. Br J Haematol. 2013;162(4):442–54. Epub 2013/05/29.

    Article  CAS  PubMed  Google Scholar 

  101. Solheim BG, Seghatchian J. Update on pathogen reduction technology for therapeutic plasma: an overview. Transfusion and Apheresis Science: Official Journal of the World Apheresis Association: Official Journal of the European Society for Haemapheresis. 2006;35(1):83–90. Epub 2006/08/29.

    CAS  Google Scholar 

  102. Prowse CV. Component pathogen inactivation: a critical review. Vox Sang. 2013;104(3):183–99. Epub 2012/11/09.

    Article  CAS  PubMed  Google Scholar 

  103. Schlenke P. Pathogen inactivation technologies for cellular blood components: an update. Transfus Med Hemother. 2014;41(4):309–25. Epub 2014/09/26.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Seltsam A. Pathogen inactivation of cellular blood products-an additional safety layer in transfusion medicine. Front Med. 2017;4:219. Epub 2017/12/20.

    Article  Google Scholar 

  105. Di Minno G, Navarro D, Perno CF, Canaro M, Gurtler L, Ironside JW, et al. Pathogen reduction/inactivation of products for the treatment of bleeding disorders: what are the processes and what should we say to patients? Ann Hematol. 2017;96(8.):Epub 2017/06/19.):1253–70.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Yonemura S, Doane S, Keil S, Goodrich R, Pidcoke H, Cardoso M. Improving the safety of whole blood-derived transfusion products with a riboflavin-based pathogen reduction technology. Blood Transfusion = Trasfusione del sangue. 2017;15(4):357–64. Epub 2017/07/01.

    PubMed  PubMed Central  Google Scholar 

  107. Cancelas JA, Gottschall JL, Rugg N, Graminske S, Schott MA, North A, et al. Red blood cell concentrates treated with the amustaline (S-303) pathogen reduction system and stored for 35 days retain post-transfusion viability: results of a two-Centre study. Vox Sang. 2017;112(3):210–8. Epub 2017/02/22.

    Article  CAS  PubMed  Google Scholar 

  108. Drew VJ, Barro L, Seghatchian J, Burnouf T. Towards pathogen inactivation of red blood cells and whole blood targeting viral DNA/RNA: design, technologies, and future prospects for developing countries. Blood Transfusion = Trasfusione del sangue. 2017;15(6):512–21. Epub 2017/05/11.

    PubMed  PubMed Central  Google Scholar 

  109. Wiltshire M, Meli A, Schott MA, Erickson A, Mufti N, Thomas S, et al. Quality of red cells after combination of prion reduction and treatment with the intercept system for pathogen inactivation. Transfus Med (Oxford, England). 2016;26(3):208–14. Epub 2016/03/24.

    Article  CAS  Google Scholar 

  110. Allain JP, Owusu-Ofori AK, Assennato SM, Marschner S, Goodrich RP, Owusu-Ofori S. Effect of Plasmodium inactivation in whole blood on the incidence of blood transfusion-transmitted malaria in endemic regions: the African investigation of the Mirasol system (AIMS) randomised controlled trial. Lancet. 2016;387(10029):1753–61. Epub 2016/04/27.

    Article  PubMed  Google Scholar 

  111. Cicchetti A, Berrino A, Casini M, Codella P, Facco G, Fiore A, et al. Health technology assessment of pathogen reduction technologies applied to plasma for clinical use. Blood Transfusion = Trasfusione del sangue. 2016;14(4):287–386. Epub 2016/07/13.

    PubMed  PubMed Central  Google Scholar 

  112. McCullough J, Goldfinger D, Gorlin J, Riley WJ, Sandhu H, Stowell C, et al. Cost implications of implementation of pathogen-inactivated platelets. Transfusion. 2015;55(10.):Epub 2015/05/20.):2312–20.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Girona-Llobera E, Jimenez-Marco T, Galmes-Trueba A, Muncunill J, Serret C, Serra N, et al. Reducing the financial impact of pathogen inactivation technology for platelet components: our experience. Transfusion. 2014;54(1):158–68. Epub 2013/05/10.

    Article  PubMed  Google Scholar 

  114. Pereira A. Health and economic impact of posttransfusion hepatitis B and cost-effectiveness analysis of expanded HBV testing protocols of blood donors: a study focused on the European Union. Transfusion. 2003;43(2):192–201. Epub 2003/02/01.

    Article  PubMed  Google Scholar 

  115. Huisman EL, van Eerd MC, Ouwens JN, de Peuter MA. Cost-effectiveness and budget impact study of solvent/detergent (SD) treated plasma (octaplasLG(R)) versus fresh-frozen plasma (FFP) in any patient receiving transfusion in Canada. Transfusion and Apheresis Science: Official Journal of the World Apheresis Association: Official Journal of the European Society for Haemapheresis. 2014;51(1):25–34. Epub 2013/05/28.

    Google Scholar 

  116. Membe SK, Coyle D, Husereau D, Cimon K, Tinmouth A, Normandin S. Octaplas compared with fresh frozen plasma to reduce the risk of transmitting lipid-enveloped viruses: an economic analysis and budget impact analysis. Ottawa: CADTH; 2011.

    Google Scholar 

  117. Huisman EL, de Silva SU, de Peuter MA. Economic evaluation of pooled solvent/detergent treated plasma versus single donor fresh-frozen plasma in patients receiving plasma transfusions in the United States. Transfusion and Apheresis Science: Official Journal of the World Apheresis Association: Official Journal of the European Society for Haemapheresis. 2014;51(1):17–24. Epub 2014/08/26.

    Google Scholar 

  118. Agapova M, Lachert E, Brojer E, Letowska M, Grabarczyk P, Custer B. Introducing pathogen reduction Technology in Poland: a cost-utility analysis. Transfus Med Hemother. 2015;42(3):158–65. Epub 2015/07/22.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Babigumira JB, Lubinga SJ, Castro E, Custer B. Cost-utility and budget impact of methylene blue-treated plasma compared to quarantine plasma. Blood Transfus. 2018;16(2):154–62. https://doi.org/10.2450/2016.0130-16. Epub 2016 Nov 16.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Custer B, Agapova M, Martinez RH. The cost-effectiveness of pathogen reduction technology as assessed using a multiple risk reduction model. Transfusion. 2010;50(11):2461–73. Epub 2010/05/26.

    Article  PubMed  Google Scholar 

  121. Bell CE, Botteman MF, Gao X, Weissfeld JL, Postma MJ, Pashos CL, et al. Cost-effectiveness of transfusion of platelet components prepared with pathogen inactivation treatment in the United States. Clin Ther. 2003;25(9):2464–86. Epub 2003/11/08.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Postma MJ, van Hulst M, De Wolf JT, Botteman M, Staginnus U. Cost-effectiveness of pathogen inactivation for platelet transfusions in the Netherlands. Transfus Med (Oxford, England). 2005;15(5):379–87. Epub 2005/10/06.

    Article  CAS  Google Scholar 

  123. Janssen MP, van der Poel CL, Buskens E, Bonneux L, Bonsel GJ, van Hout BA. Costs and benefits of bacterial culturing and pathogen reduction in the Netherlands. Transfusion. 2006;46(6):956–65. Epub 2006/06/01.

    Article  PubMed  Google Scholar 

  124. Daniels N, van der Wilt GJ. Health technology assessment, deliberative process, and ethically contested issues. Int J Technol Assess Health Care. 2016;32(1–2):10–5. Epub 2016/07/30.

    Article  PubMed  Google Scholar 

  125. Briggs AH, Weinstein MC, Fenwick EA, Karnon J, Sculpher MJ, Paltiel AD, et al. Model parameter estimation and uncertainty analysis: a report of the ISPOR-SMDM modeling good research practices task force working Group-6. Med Decis Mak. 2012;32(5.):Epub 2012/09/20.):722–32.

    Article  Google Scholar 

  126. Caro JJ, Briggs AH, Siebert U, Kuntz KM. Modeling good research practices--overview: a report of the ISPOR-SMDM modeling good research practices task Force-1. Med Decis Mak. 2012;32(5):667–77. Epub 2012/09/20.

    Article  Google Scholar 

  127. Karnon J, Stahl J, Brennan A, Caro JJ, Mar J, Moller J. Modeling using discrete event simulation: a report of the ISPOR-SMDM modeling good research practices task Force-4. Med Decis Mak. 2012;32(5):701–11. Epub 2012/09/20.

    Article  Google Scholar 

  128. Pitman R, Fisman D, Zaric GS, Postma M, Kretzschmar M, Edmunds J, et al. Dynamic transmission modeling: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force Working Group-5. Med Decis Mak. 2012;32(5):712–21. Epub 2012/09/20.

    Article  Google Scholar 

  129. Roberts M, Russell LB, Paltiel AD, Chambers M, McEwan P, Krahn M. Conceptualizing a model: a report of the ISPOR-SMDM modeling good research practices task Force-2. Med Decis Mak. 2012;32(5):678–89. Epub 2012/09/20.

    Article  Google Scholar 

  130. Siebert U, Alagoz O, Bayoumi AM, Jahn B, Owens DK, Cohen DJ, et al. State-transition modeling: a report of the ISPOR-SMDM modeling good research practices task Force-3. Med Decis Mak. 2012;32(5.):Epub 2012/09/20.):690–700.

    Article  Google Scholar 

  131. Lee BY, Mueller LE, Tilchin CG. A systems approach to vaccine decision making. Vaccine. 2017;35(Supplement 1):A36–42.

    Article  PubMed  Google Scholar 

  132. Phelps C, Madhavan G, Rappuoli R, Colwell R, Fineberg H. Beyond cost-effectiveness: using systems analysis for infectious disease preparedness. Vaccine. 2017;35(Suppl 1):A46–A9. Epub 2016/12/27.

    Article  PubMed  Google Scholar 

  133. Bloom DE, Brenzel L, Cadarette D, Sullivan J. Moving beyond traditional valuation of vaccination: needs and opportunities. Vaccine. 2017;35(Supplement 1):A29–35.

    Article  PubMed  Google Scholar 

  134. Custer BS. Good evidence begets good policy: or so it should be. Transfusion. 2012;52(3):463–5. Epub 2012/03/13.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian Custer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Custer, B. (2019). Health Economics in Blood Safety. In: Shan, H., Dodd, R. (eds) Blood Safety . Springer, Cham. https://doi.org/10.1007/978-3-319-94436-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94436-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94435-7

  • Online ISBN: 978-3-319-94436-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics