Skip to main content

Enumeration Degrees and Topology

  • Conference paper
  • First Online:
Sailing Routes in the World of Computation (CiE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10936))

Included in the following conference series:

Abstract

The study of enumeration degrees appears prima facie to be far removed from topology. Work by Miller, and subsequently recent work by Kihara and the author has revealed that actually, there is a strong connection: Substructures of the enumeration degrees correspond to \(\sigma \)-homeomorphism types of second-countable topological spaces. Here, a gentle introduction to the area is attempted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Using \(p(k) = n+1\) rather than \(p(k) = n\) is necessary to deal with the empty set in a uniform way.

  2. 2.

    There are some variations here regarding what aspects are required to be effective. Typical names used in the literature are effective topological space, computable topological space or effectively enumerable topological space, see e.g. [25, 45]. These details do not matter for our purposes.

  3. 3.

    We have slightly deviated from the usual definition here. In topology, we would typically demand that the \(\mathbf {X}_i\) can be disjointly embedded into \(\mathbf {Y}\). The difference can be removed by replacing \(\mathbf {Y}\) with \(\mathbf {Y} \times \mathbb {N}\). The results we need from topology hold for either version, and the present one makes the connection to degree theory more elegant.

  4. 4.

    We now realize that this means that there are continuous degrees which are not Turing degrees!

  5. 5.

    Solon uses the name cototal instead of graph-cototal, which we have already used for a different concept above.

  6. 6.

    An enumeration degree is quasi-minimal, if it is non-computable, but every total degree below is computable.

  7. 7.

    This open question was brought to the author’s attention by Joe Miller.

  8. 8.

    This raises the question how exactly one ought to define the Borel hierarchy in these spaces. One approach is found in [36].

References

  1. Andrews, U., Ganchev, H.A., Kuyper, R., Lempp, S., Miller, J.S., Soskova, A.A., Soskova, M.I.: On cototality and the skip operator in the enumeration degrees (preprint). http://www.math.wisc.edu/~msoskova/preprints/cototal.pdf

  2. Andrews, U., Igusa, G., Miller, J.S., Soskova, M.I.: Characterizing the continuous degrees (2017, preprint). http://www.math.wisc.edu/~jmiller/Papers/codable.pdf

  3. Arslanov, M.M., Kalimullin, I.S., Cooper, S.B.: Splitting properties of total enumeration degrees. Algebra Log. 42(1), 1–13 (2003)

    Article  MathSciNet  Google Scholar 

  4. de Brecht, M.: Quasi-Polish spaces. Ann. Pure Appl. Log. 164(3), 354–381 (2013)

    Article  MathSciNet  Google Scholar 

  5. de Brecht, M., Schröder, M., Selivanov, V.: Base-complexity classifications of QCB\(_0\)-spaces. In: Beckmann, A., Mitrana, V., Soskova, M. (eds.) CiE 2015. LNCS, vol. 9136, pp. 156–166. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20028-6_16

    Chapter  Google Scholar 

  6. Collins, P.: Computable stochastic processes. arXiv:1409.4667 (2014)

  7. Cooper, S.B.: Computability Theory. Chapman and Hall/CRC, Boca Raton (2004)

    MATH  Google Scholar 

  8. Day, A., Miller, J.: Randomness for non-computable measures. Trans. AMS 365, 3575–3591 (2013)

    Article  MathSciNet  Google Scholar 

  9. Engelking, R.: General Topology. Heldermann, Berlin (1989)

    MATH  Google Scholar 

  10. Friedberg, R., Rogers, H.: Reducibility and completeness for sets of integers. Zeitschrift für mathematische Logik und Grundlagen der Mathematik 5, 117–125 (1959)

    Article  MathSciNet  Google Scholar 

  11. Gács, P.: Uniform test of algorithmic randomness over a general space. Theor. Comput. Sci. 341(1), 91–137 (2005). http://www.sciencedirect.com/science/article/pii/S030439750500188X

    Article  MathSciNet  Google Scholar 

  12. Ganchev, H.A., Soskova, M.I.: Definability via Kalimullin pairs in the structure of the enumeration degrees. Trans. Am. Math. Soc. 367(7), 4873–4893 (2015)

    Article  MathSciNet  Google Scholar 

  13. Gregoriades, V., Kihara, T., Ng, K.M.: Turing degrees in Polish spaces and decomposability of Borel functions (2016, preprint)

    Google Scholar 

  14. Gregoriades, V., Kispéter, T., Pauly, A.: A comparison of concepts from computable analysis and effective descriptive set theory. Math. Struct. Comput. Sci. (2016). arXiv:1403.7997

  15. de Groot, J., Strecker, G., Wattel, E.: The compactness operator in general topology. In: General Topology and its Relations to Modern Analysis and Algebra, pp. 161–163. Academia Publishing House of the Czechoslovak Academy of Sciences (1967). http://eudml.org/doc/221016

  16. Grubba, T., Schröder, M., Weihrauch, K.: Computable metrization. Math. Log. Q. 53(4–5), 381–395 (2007)

    Article  MathSciNet  Google Scholar 

  17. Hinman, P.G.: Degrees of continuous functionals. J. Symb. Log. 38, 393–395 (1973)

    Article  MathSciNet  Google Scholar 

  18. Hoyrup, M.: Results in descriptive set theory on some represented spaces. arXiv:1712.03680 (2017)

  19. Hurewicz, W., Wallman, H.: Dimension Theory. Princeton Mathematical Series, vol. 4. Princeton University Press, Princeton (1948)

    MATH  Google Scholar 

  20. Jayne, J.E.: The space of class \(\alpha \) Baire functions. Bull. Am. Math. Soc. 80, 1151–1156 (1974)

    Article  MathSciNet  Google Scholar 

  21. Jeandel, E., Vanier, P.: Turing degrees of multidimensional SFTs. Theor. Comput. Sci. 505, 81–92 (2013). http://www.sciencedirect.com/science/article/pii/S0304397512008031

    Article  MathSciNet  Google Scholar 

  22. Jockusch, C.: Semirecursive sets and positive reducibility. Trans. AMS 131(2), 420–436 (1968)

    Article  MathSciNet  Google Scholar 

  23. Kihara, T., Ng, K.M., Pauly, A.: Enumeration degrees and non-metrizable topology. (201X, in preparation)

    Google Scholar 

  24. Kihara, T., Pauly, A.: Point degree spectra of represented spaces. arXiv:1405.6866 (2014)

  25. Korovina, M.V., Kudinov, O.V.: Towards computability over effectively enumerable topological spaces. Electr. Notes Theor. Comput. Sci. 221, 115–125 (2008)

    Article  MathSciNet  Google Scholar 

  26. Krupka, D.: Introduction to Global Variational Geometry. Elsevier, Amsterdam (2000)

    MATH  Google Scholar 

  27. Levin, L.A.: Uniform tests of randomness. Sov. Math. Dokl. 17(2), 337–340 (1976)

    MATH  Google Scholar 

  28. Lipham, D.: Widely-connected sets in the bucket-handle continuum. arXiv:1608.00292 (2016)

  29. McCarthy, E.: Cototal enumeration degrees and their application to computable mathematics. In: Proceedings of the AMS (to appear)

    Google Scholar 

  30. Miller, J.S.: Degrees of unsolvability of continuous functions. J. Symb. Log. 69(2), 555–584 (2004)

    Article  MathSciNet  Google Scholar 

  31. Miller, J.S., Soskova, M.I.: Density of the cototal enumeration degrees. Ann. Pure Appl. Log. (2018). http://www.sciencedirect.com/science/article/pii/S0168007218300010

  32. Moschovakis, Y.N.: Descriptive Set Theory, Studies in Logic and the Foundations of Mathematics, vol. 100. North-Holland, Amsterdam (1980)

    Google Scholar 

  33. Motto-Ros, L.: On the structure of finite level and omega-decomposable Borel functions. J. Symb. Log. 78(4), 1257–1287 (2013)

    Article  MathSciNet  Google Scholar 

  34. Motto-Ros, L., Schlicht, P., Selivanov, V.: Wadge-like reducibilities on arbitrary quasi-polish spaces. Math. Struct. Comput. Sci. 1–50 (2014). http://journals.cambridge.org/article_S0960129513000339, arXiv:1204.5338

  35. Pauly, A.: On the topological aspects of the theory of represented spaces. Computability 5(2), 159–180 (2016). arXiv:1204.3763

    Article  MathSciNet  Google Scholar 

  36. Pauly, A., de Brecht, M.: Descriptive set theory in the category of represented spaces. In: 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 438–449 (2015)

    Google Scholar 

  37. Pauly, A., Fouché, W.: How constructive is constructing measures? J. Log. Anal. 9 (2017). http://logicandanalysis.org/index.php/jla/issue/view/16

  38. Pawlikowski, J., Sabok, M.: Decomposing Borel functions and structure at finite levels of the Baire hierarchy. Ann. Pure Appl. Log. 163(12), 1748–1764 (2012)

    Article  MathSciNet  Google Scholar 

  39. Schröder, M.: Effective metrization of regular spaces. In: Ko, K.I., Nerode, A., Pour-El, M.B., Weihrauch, K., Wiedermann, J. (eds.) Computability and Complexity in Analysis. Informatik Berichte, vol. 235, pp. 63–80. FernUniversität, Hagen (1998)

    Google Scholar 

  40. Schröder, M.: Extended admissibility. Theoret. Comput. Sci. 284(2), 519–538 (2002)

    Article  MathSciNet  Google Scholar 

  41. Schröder, M., Selivanov, V.L.: Some hierarchies of QCB\(_0\)-spaces. Math. Struct. Comput. Sci. 1–25 (2014). arXiv:1304.1647

  42. Solon, B.: Co-total enumeration degrees. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 538–545. Springer, Heidelberg (2006). https://doi.org/10.1007/11780342_55

    Chapter  Google Scholar 

  43. Steen, L.A., Seebach Jr., J.A.: Counterexamples in Topology, 2nd edn. Springer, Heidelberg (1978). https://doi.org/10.1007/978-1-4612-6290-9

    Book  MATH  Google Scholar 

  44. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000). https://doi.org/10.1007/978-3-642-56999-9

    Book  MATH  Google Scholar 

  45. Weihrauch, K., Grubba, T.: Elementary computable topology. J. Univ. Comput. Sci. 15(6), 1381–1422 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

My understanding of the subject material has tremendously benefited from a multitude of discussions and talks. Foremost, I am grateful to Takayuki Kihara, but also to Matthew de Brecht, Mathieu Hoyrup, Steffen Lempp, Joseph Miller, Keng Meng Selwyn Ng and Mariya Soskova.

The author received support from the MSCA-RISE project “CID - Computing with Infinite Data” (731143) and the Marie Curie International Research Staff Exchange Scheme Computable Analysis, PIRSES-GA-2011-29496.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Pauly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pauly, A. (2018). Enumeration Degrees and Topology. In: Manea, F., Miller, R., Nowotka, D. (eds) Sailing Routes in the World of Computation. CiE 2018. Lecture Notes in Computer Science(), vol 10936. Springer, Cham. https://doi.org/10.1007/978-3-319-94418-0_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94418-0_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94417-3

  • Online ISBN: 978-3-319-94418-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics