Skip to main content

Using Dental Mesowear and Microwear for Dietary Inference: A Review of Current Techniques and Applications

  • Chapter
  • First Online:
Methods in Paleoecology

Part of the book series: Vertebrate Paleobiology and Paleoanthropology ((VERT))

Abstract

Mesowear and microwear analyses use data from worn tooth surfaces as proxies for feeding ecology. Mesowear is based on gross dental wear and forms over months to years. The method was originally developed for ungulates but has recently been expanded to other groups, at least preliminarily. Dental microwear has been investigated for well over half a century and continues to be refined. It forms over days to weeks. Wide varieties of techniques are currently used for microwear analysis, all of which require attention to detail. Among these techniques, three-dimensional microwear texture analysis has the greatest potential for accurately reconstructing feeding ecology, yet the “recipe” for analyzing microwear data remains a work in progress. Combining mesowear and microwear with one another and other dietary proxies can permit robust inferences about the feeding ecology of extinct species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews, P., & Hixson, S. (2014). Taxon-free methods of palaeoecology. Annales Zoologici Fennici, 51, 269–284.

    Article  Google Scholar 

  • Arman, S. D., Ungar, P. S., Brown, C. A., DeSantis, L. R. G., Schmidt, C., & Prideaux, G. J. (2016). Minimizing inter-microscope variability in dental microwear texture analysis. Surface Topography: Metrology and Properties, 4, 024007.

    Google Scholar 

  • Baines, D. C., Purnell, M. A., & Hart, P. J. B. (2014). Tooth microwear formation rate in Gaterosteus aculeatus. Journal of Fish Biology, 84, 1582–1589.

    Article  Google Scholar 

  • Borrero-Lopez, O., Pajares, A., Constantino, P. J., & Lawn, B. R. (2015). Mechanics of microwear traces in tooth enamel. Acta Biomaterialia, 14, 146–153.

    Article  Google Scholar 

  • Bowyer, R. T., McKenna, S. A., & Shea, M. E. (1983). Seasonal changes in coyote food habits as determined by fecal analysis. The American Midland Naturalist, 109, 266–273.

    Article  Google Scholar 

  • Butler, P. M. (1952). The milk molars of Perissodactyla, with remarks on molar occlusion. Proceedings of the Zoological Society of London, 121, 777–817.

    Article  Google Scholar 

  • Butler, K., Louys, J., & Travouillon, K. (2014). Extending dental mesowear analyses to Australian marsupials, with applications to six Plio-Pleistocene kangaroos from southeast Queensland. Palaeogeography, Palaeoclimatology, Palaeoecology, 408, 11–25.

    Article  Google Scholar 

  • Calandra, I., & Merceron, G. (2016). Dental microwear texture analysis in mammalian ecology. Mammal Review, 46, 215–228.

    Article  Google Scholar 

  • Calandra, I., Schulz, E., Pinnow, M., Krohn, S., & Kaiser, T. M. (2012). Teasing apart the contributions of hard dietary items on 3D dental microtextures in primates. Journal of Human Evolution, 63, 85–98.

    Article  Google Scholar 

  • Christensen, H. B. (2014). Similar associations of tooth microwear and morphology indicate similar diet across marsupial and placental mammals. PLoS ONE, 9, e102789.

    Article  Google Scholar 

  • Conover, W. J., & Iman, R. L. (1981). Rank transformations as a bridge between parametric and nonparametric statistics. The American Statistician, 35, 124–129.

    Google Scholar 

  • Constantino, P. J., Borrero-Lopez, O., Pajares, A., & Lawn, B. R. (2015). Simulation of enamel wear for reconstruction of diet and feeding behavior in fossil mammals: a micromechanics approach. BioEssays, 38, 89–99.

    Article  Google Scholar 

  • Coombs, M., & Semprebon, G. (2005). The diet of chalicotheres (Mammalia, Perissodactyla) as indicated by low magnification stereoscopic microwear analysis. Journal of Vertebrate Paleontology, 25, 47A.

    Google Scholar 

  • Croft, D. A. (1999). Placentals: South American ungulates. In R. Singer (Ed.), Encyclopedia of Paleontology (pp. 890–906). Chicago: Fitzroy-Dearborn Publishers.

    Google Scholar 

  • Croft, D. A., & Weinstein, D. (2008). The first application of the mesowear method to endemic South American ungulates (Notoungulata). Palaeogeography, Palaeoclimatology, Palaeoecology, 269, 103–114.

    Article  Google Scholar 

  • Curran, S. C. (2018). Three-dimensional geometric morphometrics in paleoecology. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 317–335). Cham: Springer.

    Google Scholar 

  • Damuth, J., & Janis, C. M. (2014). A comparison of observed molar wear rates in extant herbivorous mammals. Annales Zoologici Fennici, 51, 188–200.

    Article  Google Scholar 

  • Danowitz, M., Hou, S., Mihlbachler, M., Hastings, V., & Solounias, N. (2016). A combined-mesowear analysis of late Miocene giraffids from North Chinese and Greek localities of the Pikermian Biome. Palaeogeography, Palaeoclimatology, Palaeoecology, 449, 194–204.

    Article  Google Scholar 

  • DeSantis, L. R. G. (2016). Dental microwear textures: reconstructing diets of fossil mammals. Surface Topography: Metrology and Properties, 4, 023002.

    Google Scholar 

  • DeSantis, L. R. G., Scott, J. R., Schubert, B. W., Donohue, S. L., McCray, B. M., Van Stolk, C. A., et al. (2013). Direct comparisons of 2D and 3D dental microwear proxies in extant herbivorous and carnivorous mammals. PLoS ONE, 8, e71428.

    Article  Google Scholar 

  • Donohue, S. L., DeSantis, L. R. G., Schubert, B. W., & Ungar, P. S. (2013). Was the Giant short-faced bear a hyper-scavenger? A new approach to the dietary study of ursids using dental microwear textures. PLoS ONE, 8, e77531.

    Article  Google Scholar 

  • Erickson, K. L. (2014). Prairie grass phytolith hardness and the evolution of ungulate hypsodonty. Historical Biology: An International Journal of Paleobiology, 26, 737–744.

    Article  Google Scholar 

  • Estebaranz, F., Galbany, J., Martínez, L. M., & Pérez-Pérez, A. (2007). 3-D interferometric microscopy applied to the study of buccal enamel microwear. In S. E. Bailey & J.-J. Hublin (Eds.), Dental Perspectives on Human Evolution (pp. 391–403). New York: Springer.

    Google Scholar 

  • Fortelius, M., & Solounias, N. (2000). Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates, 3301, 1–36.

    Article  Google Scholar 

  • Franz-Odendaal, T. A., Kaiser, T. M., & Bernor, R. L. (2003). Systematics and dietary evaluation of a fossil equid from South Africa. South African Journal of Science, 99, 453–459.

    Google Scholar 

  • Fraser, D., & Theodor, J. M. (2010). The use of gross dental wear in dietary studies of extinct lagomorphs. Journal of Paleontology, 84, 720–729.

    Article  Google Scholar 

  • Fraser, D., & Theodor, J. M. (2011). Comparing ungulate dietary proxies using discriminant function analysis. Journal of Morphology, 272, 1513–1526.

    Article  Google Scholar 

  • Fraser, D., Mallon, J. C., Furr, R., & Theodor, J. M. (2009). Improving the repeatability of low magnification microwear methods using high dynamic range imaging. PALAIOS, 24, 818–825.

    Article  Google Scholar 

  • Fraser, D., Zybutz, T., Lightner, E., & Theodor, J. M. (2014). Ruminant mandibular tooth mesowear: a new scheme for increasing paleoecological sample sizes. Journal of Zoology, 294, 41–48.

    Article  Google Scholar 

  • Galbany, J., Martinez, L. M., & Perez-Perez, A. (2004). Tooth replication techniques, SEM imaging and microwear analysis in primates: methodological obstacles. Anthropologie, 42, 5–12.

    Google Scholar 

  • Galbany, J., Martínez, L. M., López-Amor, H. M., Espurz, V., Hiraldo, O., Romero, A., et al. (2005). Error rates in buccal-dental microwear quantification using scanning electron microscopy. Scanning, 27, 23–29.

    Article  Google Scholar 

  • Galbany, J., Estebaranz, F., Martínez, L. M., Romera, A., De Juan, J., Turbón, D., et al. (2006). Comparative analysis of dental enamel polyvinylsiloxane impression and polyurethane casting methods for SEM research. Microscopy Research and Technique, 69, 246–252.

    Article  Google Scholar 

  • Gill, P. G., Purnell, M. A., Crumpton, N., Brown, K. R., Gostling, N. J., Stampanoni, M., et al. (2014). Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature, 512, 303–305.

    Article  Google Scholar 

  • Godfrey, L. R., Semprebon, G. M., Jungers, W. L., Sutherland, M. L., Simons, E. L., & Solounias, N. (2004). Dental use wear in extinct lemurs: evidence of diet and niche differentiation. Journal of Human Evolution, 47, 145–169.

    Article  Google Scholar 

  • Goodall, R. H., Darras, L. P., & Purnell, M. A. (2015). Accuracy and precision of silicon based impression media for quantitative areal texture analysis. Scientific Reports, 5, 10800.

    Article  Google Scholar 

  • Gordon, K. D. (1982). A study of microwear on chimpanzee molars: implications for dental microwear analysis. American Journal of Physical Anthropology, 59, 195–215.

    Article  Google Scholar 

  • Gordon, K. D. (1984a). The assessment of jaw movement direction from dental microwear. American Journal of Physical Anthropology, 63, 77–84.

    Article  Google Scholar 

  • Gordon, K. D. (1984b). Hominoid dental microwear: complications in the use of microwear analysis to detect diet. Journal of Dental Research, 63, 1043–1046.

    Article  Google Scholar 

  • Gordon, K. D. (1988). A review of methodology and quantification in dental microwear analysis. Scanning Microscopy, 2, 1139–1147.

    Google Scholar 

  • Green, J. L. (2009a). Dental microwear in the orthodentine of the Xenarthra (Mammalia) and its use in reconstructing the palaeodiet of extinct taxa: the case study of Nothrotheriops shastensis (Xenarthra, Tardigrada, Nothrotheriidae). Zoological Journal of the Linnean Society, 156, 201–222.

    Article  Google Scholar 

  • Green, J. L. (2009b). Intertooth variation of orthodentine microwear in armadillos (Cingulata) and tree sloths (Pilosa). Journal of Mammalogy, 90, 768–778.

    Article  Google Scholar 

  • Green, J. L., & Kalthoff, D. C. (2015). Xenarthran dental microstructure and dental microwear analyses, with new data for Megatherium americanum (Megatheriidae). Journal of Mammalogy, 96, 645–657.

    Article  Google Scholar 

  • Green, J. L., & Resar, N. A. (2012). The link between dental microwear and feeding ecology in tree sloths and armadillos (Mammalia: Xenarthra). Biological Journal of the Linnean Society, 107, 277–294.

    Article  Google Scholar 

  • Green, J. L., Semprebon, G. M., & Solounias, N. (2005). Reconstructing the palaeodiet of Florida Mammut americanum via low-magnification stereomicroscopy. Palaeogeography, Palaeoclimatology, Palaeoecology, 223, 34–48.

    Article  Google Scholar 

  • Grine, F. E. (1986). Dental evidence for dietary differences in Australopithecus and Paranthropus: a quantitative analysis of permanent molar microwear. Journal of Human Evolution, 15, 783–822.

    Article  Google Scholar 

  • Grine, F. E., Ungar, P. S., & Teaford, M. F. (2002). Error rates in dental microwear quantification using scanning electron microscopy. Scanning, 24, 144–153.

    Article  Google Scholar 

  • Grine, F. E., Ungar, P. S., Teaford, M. F., & El-Zaatari, S. (2006). Molar microwear in Praeanthropus afarensis: evidence for dietary stasis through time and under diverse paleoecological conditions. Journal of Human Evolution, 51, 297–319.

    Article  Google Scholar 

  • Haupt, R. J., DeSantis, L. R. G., Green, J. L., & Ungar, P. S. (2013). Dental microwear texture as a proxy for diet in xenarthrans. Journal of Mammalogy, 94, 856–866.

    Article  Google Scholar 

  • Heiduck, S. (1997). Food choice in Masked titi monkeys (Callicebus personatus melanochir): selectivity or opportunism? International Journal of Primatology, 18, 487–502.

    Article  Google Scholar 

  • Henton, E., MCorriston, J., Martin, L., & Oches, E.A. (2014). Seasonal aggregation and ritual slaughter: isotopic and dental microwear for cattle herder mobility in the Arabian Neolithic. Journal of Anthropological Archaeology, 33, 119–131.

    Google Scholar 

  • Higgins, P. (2018). Isotope ecology from biominerals. In D. A. Croft, D. F. Su & S. W. Simpson (Eds.), Methods in paleoecology: Reconstructing Cenozoic terrestrial environments and ecological communities (pp. 99–120). Cham: Springer.

    Google Scholar 

  • Hoffman, J. M., Fraser, D., & Clementz, M. T. (2015). Controlled feeding trials with ungulates: a new application of in vivo dental molding to assess the abrasive factors of microwear. The Journal of Experimental Biology, 218, 1538–1547.

    Google Scholar 

  • Hua, L., Brandt, E. T., Meullenet, J., Zhou, Z., & Ungar, P. S. (2015). Technical note: an in vitro study of dental microwear formation using the BITE Master II chewing machine. American Journal of Physical Anthropology, 158, 769–775.

    Google Scholar 

  • Kaiser, T. M., & Fortelius, M. (2003). Differential mesowear in occluding upper and lower molars: opening mesowear analysis for lower molars and premolars in hypsodont horses. Journal of Morphology, 258, 67–83.

    Article  Google Scholar 

  • Kaiser, T. M., & Schulz, E. (2006). Tooth wear gradients in zebras as an environmental proxy – a pilot study. Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institut, 103, 187–210.

    Google Scholar 

  • Kaiser, T. M., & Solounias, N. (2003). Extending the tooth mesowear method to extinct and extant equids. Geodiversitas, 25, 321–345.

    Google Scholar 

  • Kaiser, T. M., Brasch, J., Castell, J. C., Schulz, E., & Clauss, M. (2009). Tooth wear in captive wild ruminant species differs from that of free-ranging conspecifics. Mammalian Biology – Zeitschrift für Säugetierkunde, 74, 425–437.

    Article  Google Scholar 

  • Kaiser, T. M., Müller, D. W. H., Fortelius, M., Schulz, E., Codron, D., & Clauss, M. (2013). Hypsodonty and tooth facet development in relation to diet and habitat in herbivorous ungulates: implications for understanding tooth wear. Mammal Review, 43, 34–46.

    Article  Google Scholar 

  • Kay, R. F., & Covert, H. H. (1983). True grit: a microwear experiment. American Journal of Physical Anthropology, 61, 33–38.

    Article  Google Scholar 

  • King, T., Andrews, P., & Boz, B. (1999). Effect of taphonomic processes on dental microwear. American Journal of Physical Anthropology, 108, 359–373.

    Article  Google Scholar 

  • Krueger, K. L., Scott, J. R., Kay, R. F., & Ungar, P. S. (2008). Technical note: dental microwear textures of “Phase I” and “Phase II” facets. American Journal of Physical Anthropology, 137, 485–490.

    Article  Google Scholar 

  • Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis. Journal of the American Statistical Association, 47, 583–621.

    Article  Google Scholar 

  • Kubo, M. O., & Yamada, E. (2014). The inter-relationship between dietary and environmental properties and tooth wear: comparisons of mesowear, molar wear rate, and hypsodonty index of extant sika deer populations. PLoS ONE, 9, e90745.

    Article  Google Scholar 

  • Loffredo, L. F., & DeSantis, L. R. G. (2014). Cautionary lessons from assessing dental mesowear observer variability and integrating paleoecological proxies of an extreme generalist Cormohipparion emsliei. Palaeogeography, Palaeoclimatology, Palaeoecology, 395, 42–52.

    Article  Google Scholar 

  • Lucas, P. W. (2005). Dental functional morphology: How teeth work. New York: Cambridge University Press.

    Google Scholar 

  • Lucas, P. W., Omar, R., Al-Fadhalah, K., Almusallam, A. S., Henry, A. G., Michael, S., et al. (2013). Mechanisms and causes of wear in tooth enamel: implications for hominin diets. Journal of the Royal Society Interface, 10, 20120923.

    Article  Google Scholar 

  • Maas, M. C. (1991). Enamel structure and microwear: an experimental study of the response of enamel to shearing force. American Journal of Physical Anthropology, 85, 31–49.

    Article  Google Scholar 

  • MacFadden, B. J., Solounias, N., & Cerling, T. E. (1999). Ancient diets, ecology, and extinction in 5-million-year-old horses from Florida. Science, 283, 824–827.

    Article  Google Scholar 

  • Martínez, L. M., & Pérez-Pérez, A. (2004). Post-mortem wear as an indicator of taphonomic processes affecting enamel surfaces on hominin teeth from Laetoli and Olduvai (Tanzania): implications to dietary interpretations. Anthropologie, 42, 37–42.

    Google Scholar 

  • McAfee, R. K., & Green, J. L. (2015). The role of bite force in the formation of orthodentine microwear in tree sloths (Mammalia: Xenarthra: Folivora): implications for feeding ecology. Archives of Oral Biology, 60, 181–192.

    Article  Google Scholar 

  • Merceron, G., Blondel, C., De Bonis, L., Koufos, G. D., & Viriot, L. (2005). A new method of dental microwear analysis: application to extant primates and Ouranopithecus macedoniensis (Late Miocene of Greece). PALAIOS, 20, 551–561.

    Article  Google Scholar 

  • Merceron, G., Escarguel, G., Angibault, J., & Verheyden-Tixier, H. (2010). Can dental microwear textures record inter-individual dietary variations? PLoS ONE, 5, e9542.

    Article  Google Scholar 

  • Merceron, G., Hofman-Kamińska, E., & Kowalczyk. (2014). 3D dental microwear texture analysis of feeding habits of sympatric ruminants in the Bialowiża Primeval Forest, Poland. Forest Ecology and Management, 328, 262–269.

    Google Scholar 

  • Mihlbachler, M. C., & Beatty, B. L. (2012). Magnification and resolution in dental microwear analysis using light microscopy. Palaeontologia Electronica, 15, 25A.

    Google Scholar 

  • Mihlbachler, M. C., & Solounias, N. (2006). Coevolution of tooth crown height and diet in Oreodonts (Merycoidodontidae, Artiodactyla) examined with phylogenetically independent contrasts. Journal of Mammalian Evolution, 13, 11–36.

    Article  Google Scholar 

  • Mihlbachler, M. C., Rivals, F., Solounias, N., & Semprebon, G. M. (2011). Dietary change and evolution of horses in North America. Science, 331, 1178–1181.

    Article  Google Scholar 

  • Mihlbachler, M. C., Beatty, B. L., Caldera-Siu, A., Chan, D., & Lee, R. (2012). Error rates and observer bias in dental microwear analysis using light microscopy. Palaeontologia Electronica, 15, 12A.

    Google Scholar 

  • Mihlbachler, M. C., Campbell, D., Ayoub, M., Chen, C., & Ghani, I. (2016). Comparative dental microwear of ruminant and perissodactyl molars: implications for paleodietary analysis of rare and extinct ungulate clades. Paleobiology, 42, 98–116.

    Article  Google Scholar 

  • Mills, J. R. E. (1955). Ideal dental occlusion in primates. Dental Practice, 6, 47–61.

    Google Scholar 

  • Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., et al. (2012). How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3, 743–756.

    Article  Google Scholar 

  • Nelson, S., Badgley, C., & Zakem, E. (2005). Microwear in modern squirrels in relation to diet. Palaeontologia Electronica, 8, 14A.

    Google Scholar 

  • Oliveira, E. V. (2001). Micro-desgaste dentario em alguns Dasypodidae (Mammalia, Xenarthra). Acta Biologica Leopoldensia, 23, 83–91.

    Google Scholar 

  • Organ, J. M., Ruff, C. B., Teaford, M. F., & Nisbett, R. A. (2006). Do mandibular cross-sectional properties and dental microwear give similar dietary signals? American Journal of Physical Anthropology, 130, 501–507.

    Article  Google Scholar 

  • Patnaik, R. (2015). Diet and habitat changes among Siwalik herbivorous mammals in response to Neogene and Quaternary climate changes: an appraisal in the light of new data. Quaternary International, 371, 232–243.

    Article  Google Scholar 

  • Purnell, M. A., Crumpton, N., Gill, P. G., Jones, G., & Rayfield, E. J. (2013). Within-guild dietary discrimination from 3-D textural analysis of tooth microwear in insectivorous mammals. Journal of Zoology, 291, 249–257.

    Article  Google Scholar 

  • Purnell, M. A., Hart, P. J. B., Baines, D. C., & Bell, M. A. (2006). Quantitative analysis of dental microwear in threespine stickleback: a new approach to analysis of trophic ecology in aquatic vertebrates. Journal of Animal Ecology, 75, 967–977.

    Article  Google Scholar 

  • Purnell, M., Seehausen, O., & Galis, F. (2012). Quantitative three-dimensional microtextural analyses of tooth wear as a tool for dietary discrimination in fishes. Journal of the Royal Society Interface, 9, 2225–2233.

    Article  Google Scholar 

  • Rabenold, D., & Pearson, O. M. (2014). Scratching the surface: a critique of Lucas et al. (2013)’s conclusion that phytoliths don’t abrade enamel. Journal of Human Evolution, 74, 130–133.

    Google Scholar 

  • Rensberger, J. M. (1978). Scanning electron microscopy, of wear and occlusal event in some small herbivores. In P. M. Butler & K. A. Joysey (Eds.), Development, function, and evolution of teeth (pp. 415–438). New York: Academic Press.

    Google Scholar 

  • Resar, N. A., Green, J. L., & McAfee, R. K. (2013). Reconstructing paleodiet in ground sloths (Mammalia, Xenarthra) using dental microwear analysis. Kirtlandia, 58, 61–72.

    Google Scholar 

  • Rivals, F., & Semprebon, G. M. (2006). A comparison of the dietary habits of a large sample of the Pleistocene pronghorn Stockoceros onusrosagris from the Papago Springs Cave in Arizona to the modern Antilocapra americana. Journal of Vertebrate Paleontology, 26, 495–500.

    Article  Google Scholar 

  • Rivals, F., & Solounias, N. (2007). Differences in tooth microwear in populations of caribou (Rangifer tarandus, Ruminatia, Mammalia) and implications to ecology, migration, glaciations and dental evolution. Journal of Mammalian Evolution, 14, 182–192.

    Article  Google Scholar 

  • Rivals, F., Mihlbachler, M. C., & Solounias, N. (2007). Effect of ontogenetic-age distribution in fossil and modern samples on the interpretation of ungulate paleodiets using the mesowear method. Journal of Vertebrate Paleontology, 27, 763–767.

    Article  Google Scholar 

  • Rivals, F., Semprebon, G., & Lister, A. (2012). An examination of dietary diversity patterns in Pleistocene proboscideans (Mammuthus, Palaeoloxodon, and Mammut) from Europe and North America as revealed by dental microwear. Quaternary International, 255, 188–195.

    Article  Google Scholar 

  • Rivals, F., Rindel, D., & Belardi, J. B. (2013). Dietary ecology of extant guanaco (Lama guanicoe) from southern Patagonia: seasonal leaf browsing and its archaeological implications. Journal of Archaeological Science, 40, 2971–2980.

    Article  Google Scholar 

  • Rivals, F., Prignano, L., Semprebon, G. M., & Lozano, S. (2015). A tool for determining duration of mortality events in archaeological assemblages using extant ungulate microwear. Scientific Reports, 5, 17330.

    Article  Google Scholar 

  • Rivals, F., Mihlbachler, M. C., Solounias, N., Mol, D., Semprebon, G. M., de Vos, J., et al. (2010). Palaeoecology of the Mammoth Steppe fauna from the late Pleistocene of the North Sea and Alaska: separating species preferences from geographic influence in paleoecological dental wear analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 286, 42–54.

    Article  Google Scholar 

  • Rose, J. J. (1983). A replication technique for scanning electron microscopy: applications for anthropologists. American Journal of Physical Anthropology, 62, 255–261.

    Article  Google Scholar 

  • Saarinen, J., Karme, A., Cerling, T., Uno, K., Säilä, L., Kasiki, S. et al. (2015). A new tooth wear-based dietary analysis method for Proboscidea (Mammalia). Journal of Vertebrate Paleontology, e918546.

    Google Scholar 

  • Sánchez-Hernández, C., Rivals, F., Blasco, R., & Rosell, J. (2016). Tale of two timescales: combining tooth wear methods with different temporal resolutions to detect seasonality of Paleolithic hominin occupational patterns. Journal of Archaeological Research: Reports, 6, 790–797.

    Google Scholar 

  • Schulz, E., Calandra, I., & Kaiser, T. M. (2010). Applying tribology to teeth of hoofed mammals. Scanning, 32, 162–182.

    Article  Google Scholar 

  • Schulz, E., Fahlke, J. M., Merceron, G., & Kaiser, T. M. (2007). Feeding ecology of the Chalicotheriidae (Mammalia, Perissodactyla, Ancylopoda). Results from dental micro- and mesowear analyses. Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg, 43, 5–31.

    Google Scholar 

  • Schulz, E., Piotrowski, V., Clauss, M., Mau, M., Merceron, G., & Kaiser, T. M. (2013). Dietary abrasiveness is associated with variability of microwear and dental surface texture in rabbits. PLoS ONE, 8, e56167.

    Article  Google Scholar 

  • Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Grine, F. E., Teaford, M. F., et al. (2005). Dental microwear texture analysis reflects diets of living primates and fossil hominins. Nature, 436, 693–695.

    Article  Google Scholar 

  • Scott, R. S., Ungar, P. S., Bergstrom, T. S., Brown, C. A., Childs, B. E., Teaford, M. F., et al. (2006). Dental microwear texture analysis: technical considerations. Journal of Human Evolution, 51, 339–349.

    Article  Google Scholar 

  • Semprebon, G., & Rivals, F. (2007). Was grass more prevalent in the pronghorn past? An assessment of the dietary adaptations of Miocene and Recent Antilocapridae (Mammalia: Artiodactyla). Palaeogeography, Palaeoclimatology, Palaeoecology, 253, 332–347.

    Article  Google Scholar 

  • Semprebon, G., Janis, C., & Solounias, N. (2004a). The diets of the Dromomerycidae (Mammalia: Artiodactyla) and their response to Miocene vegetational change. Journal of Vertebrate Paleontology, 24, 427–444.

    Article  Google Scholar 

  • Semprebon, G., Godfrey, L. R., Solounias, N., Sutherland, M., & Jungers, W. L. (2004b). Can low-magnification stereomicroscopy reveal diet? Journal of Human Evolution, 47, 115–144.

    Article  Google Scholar 

  • Semprebon, G., Sise, P., & Coombs, M. (2011). Potential bark and fruit browsing as revealed by stereomicrowear analysis of the peculiar clawed herbivores known as chalicotheres (Perissodactyla, Chalicotherioidea). Journal of Mammalian Evolution, 18, 33–55.

    Article  Google Scholar 

  • Shearer, B. M., Ungar, P. S., McNulty, K. P., Harcourt-Smith, W. E. H., Dunsworth, H. M., & Teaford, M. F. (2015). Dental microwear profilometry of African non-cercopithecoid catarrhines of the Early Miocene. Journal of Human Evolution, 78, 33–43.

    Article  Google Scholar 

  • Sidorovich, V. E. (2000). Seasonal variation in the feeding habits of riparian mustelids in river valleys of ME Belarus. Acta Theriologica, 45, 233–242.

    Article  Google Scholar 

  • Solounias, N., & Semprebon, G. (2002). Advances in the reconstruction of ungulate ecomorphology with application to early fossil equids. American Museum Novitates, 3366, 1–49.

    Article  Google Scholar 

  • Solounias, N., Tariq, M., Hou, S., Danowitz, M., & Harrison, M. (2014). A new method of tooth mesowear and a test of it on domestic goats. Annales Zoologici Fennici, 51, 111–118.

    Article  Google Scholar 

  • Spradley, J. P., Glander, K. E., & Kay, R. F. (2016). Dust in the wind: how climate variables and volcanic dust affect rates of tooth wear in Central American howling monkeys. American Journal of Physical Anthropology, 159, 210–222.

    Article  Google Scholar 

  • Stokke, S., & du Toit, J. T. (2000). Sex and size related differences in the dry season feeding patterns of elephants in Chobe National Park, Botswana. Ecography, 23, 70–80.

    Article  Google Scholar 

  • Strait, S. G. (1993). Molar microwear in extant small-bodied faunivorous mammals: an analysis of feature density and pit frequency. American Journal of Physical Anthropology, 92, 63–79.

    Article  Google Scholar 

  • Strait, S. G. (2014). Myrmecophagous microwear: implications for diet in the homin fossil record. Journal of Human Evolution, 71, 87–93.

    Article  Google Scholar 

  • Stynder, D. D. (2011). Fossil bovid diets indicate a scarcity of grass in the Langebaanweg E Quarry (South Africa) late Miocene/early Pliocene environment. Paleobiology, 37, 126–139.

    Article  Google Scholar 

  • Tausch, J., Kullmer, O., & Bromage, T. G. (2015). A new method for determining the 3D spatial orientation of molar microwear. Scanning, 37, 446–457.

    Article  Google Scholar 

  • Taylor, L. A., Kaiser, T. M., Schwitzer, C., Müller, D. W. H., Codron, D., Clauss, M., et al. (2013). Detecting inter-cusp and inter-tooth wear patterns in rhinocerotids. PLoS ONE, 8, e80921.

    Article  Google Scholar 

  • Teaford, M. F. (1988). Scanning electron microscope diagnosis of wear patterns versus artifacts on fossil teeth. Scanning Microscopy, 2, 1167–1175.

    Google Scholar 

  • Teaford, M. F. (1991). Dental microwear: what can it tell us about diet and dental function? In M. A. Kelley & C. S. Larsen (Eds.), Advances in Dental Anthropology (pp. 341–356). New York: Wiley-Liss.

    Google Scholar 

  • Teaford, M. F. (2007). What do we know and not know about dental microwear and diet? In P. S. Ungar (Ed.), Evolution of the Human Diet: The known, the unknown, and the unknowable (pp. 106–131). Oxford: Oxford University Press.

    Google Scholar 

  • Teaford, M. F., & Oyen, O. J. (1989). In vivo and in vitro turnover in dental microwear. American Journal of Physical Anthropology, 80, 447–460.

    Article  Google Scholar 

  • Teaford, M. F., & Walker, A. (1984). Quantitative differences in dental microwear between primate species with different diets and a comment on the presumed diet of Sivapithecus. American Journal of Physical Anthropology, 64, 191–200.

    Article  Google Scholar 

  • Townsend, K. E., & Croft, D. A. (2008a). Diets of notoungulates from the Santa Cruz Formation, Argentina: new evidence from enamel microwear. Journal of Vertebrate Paleontology, 28, 217–230.

    Article  Google Scholar 

  • Townsend, K. E., & Croft, D. A. (2008b). Enamel microwear in caviomorph rodents. Journal of Mammalogy, 89, 728–742.

    Article  Google Scholar 

  • Ulbricht, A., Maul, L. C., & Schulz, E. (2015). Can mesowear analysis be applied to small mammals? A pilot-study on leporines and murines. Mammalian Biology – Zeitschrift für Säugetierkunde, 80, 14–20.

    Article  Google Scholar 

  • Ungar, P. S. (1995). A semiautomated image analysis procedure for the quantification of dental microwear II. Scanning, 17, 57–59.

    Article  Google Scholar 

  • Ungar, P. S. (2002). Microware software. Version 4.02. A semiautomated image analysis system for the quantification of dental microwear. Unpublished. Fayetteville.

    Google Scholar 

  • Ungar, P. S. (2015). Mammalian dental function and wear: a review. Biosurface and Biotribology, 1, 25–41.

    Article  Google Scholar 

  • Ungar, P. S., & Spencer, M. A. (1999). Incisor microwear, diet, and tooth use in three Amerindian populations. American Journal of Physical Anthropology, 109, 387–396.

    Article  Google Scholar 

  • Ungar, P. S., Merceron, G., & Scott, R. S. (2007). Dental microwear texture analysis of Varswater bovids and Early Pliocene palaeoenvironments of Langebaanweg, Western Cape Province, South Africa. Journal of Mammalian Evolution, 14, 163–181.

    Article  Google Scholar 

  • Ungar, P. S., Brown, C. A., Bergstrom, T. S., & Walker, A. (2003). Quantification of dental microwear by tandem scanning confocal microscopy, and scale sensitive fractal analysis. Scanning, 25, 185–193.

    Article  Google Scholar 

  • Ungar, P. S., Scott, R. S., Scott, J. R., & Teaford, M. (2008). Dental microwear analysis: historical perspectives and new approaches. In J. D. Irish & G. C. Nelson (Eds.), Technique and application in dental anthropology (pp. 389–425). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Vaux, D. (2012). Research methods: know when your numbers are significant. Nature, 492, 180–181.

    Google Scholar 

  • Walker, A., Hoeck, H. N., & Perez, L. (1978). Microwear of mammalian teeth as an indicator of diet. Science, 201, 908–910.

    Article  Google Scholar 

  • Winkler, D. A., & Kaiser, T. M. (2011). A case study of seasonal, sexual and ontogenetic divergence in the feeding behaviour of the moose (Alces alces LINNÉ, 1758). Verhandlungen des Naturwissenschaftlichen Vereins Hamburg, 46, 331–348.

    Google Scholar 

  • Withnell, C. B., & Ungar, P. S. (2014). A preliminary analysis of dental microwear as a proxy for diet and habitat in shrews. Mammalia, 78, 409–415.

    Article  Google Scholar 

  • Xia, J., Zheng, J., Huang, D., Tian, Z. R., Chen, L., Zhou, Z., et al. (2015). New model to explain tooth wear with implications for microwear formation and diet reconstruction. Proceedings of the National Academy of Sciences, USA, 112, 10669–10672.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy L. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Green, J.L., Croft, D.A. (2018). Using Dental Mesowear and Microwear for Dietary Inference: A Review of Current Techniques and Applications. In: Croft, D., Su, D., Simpson, S. (eds) Methods in Paleoecology. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-319-94265-0_5

Download citation

Publish with us

Policies and ethics