Skip to main content

Panel Discussion, “The Duel”: The Good, the Bad, and the Ugly of Gravity and Information

  • Conference paper
  • First Online:
2nd Karl Schwarzschild Meeting on Gravitational Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 208))

Abstract

Various contenders for a complete theory of quantum gravity are at odds with each other. This is in particular seen in the ways they relate to information and black holes, and how to effectively treat quantization of the background spacetime. Modern perspectives on black hole evaporation suggest that quantum gravity effects in the near-horizon region can perturb the local geometry. The approaches differ, however, in the time scale on which one can expect these effects to become important. This panel session presents three points of view on these problems, and considers the ultimate prospect of observational tests in the near future.

Two hundred thousand dollars is a lot of money. We’re gonna have to earn it.

— Blondie, “The Good, the Bad and the Ugly”, 1966

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The spectrum at the event horizon is thermal in an extremely accurate approximation according to Hawking’s argument. Small corrections come from the decreasing black hole mass due to evaporation, as well as finite size and shape effects during the emission. An asymptotic observer measures deviations from a thermal spectrum induced by the curved geometry outside the horizon, i.e. greybody factors.

  2. 2.

    This is the system which we consider in this paper if not stated otherwise.

  3. 3.

    As a side remark: the famous 1 / 4 factor of the Bekenstein-Hawking entropy \(S=A/4\) is confusing: if instead of \(G_\mathrm{Newton}=1\) we use units where the proper coupling constant of GR is taken to be unit, namely \(8\pi G_\mathrm{Newton}=1\), then the coefficient of the Bekenstein-Hawking entropy looks far more conventional: \(S=2\pi \, A\).

  4. 4.

    Note for example that there is a cancellation between the interaction of infalling matter with outgoing Hawking particles and with Hawking “partners” behind the horizon [75], which appears to eliminate large effects like those proposed by Gerard.

  5. 5.

    Note that if nonlocality from gravitational dressing indeed is found to play a central role, its effect might also possibly be parameterizable in such a fashion.

  6. 6.

    For a different point of view on this subject, see the footnote at the end of Sect. 2.4.

  7. 7.

    Regarding observational prospects and in direct response to Steve (see Sect. 2.3.4), the by far most likely scenario is that quantum effects will leave no trace in the behavior of kilometer-sized black holes, since we expect, like everywhere else in quantum mechanics, that all phenomena where the length scale, the time scale and the mass scale are way beyond the quantum regime, will be described by classical laws. In this case, these will be Einstein’s equations, so that no deviations from the standard GR results will be seen to occur.

References

  1. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  2. J.M. Bardeen, B. Carter, S.W. Hawking, The Four laws of black hole mechanics. Commun. Math. Phys. 31, 161–170 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  3. G. Chirco, H.M. Haggard, A. Riello, C. Rovelli, Spacetime thermodynamics without hidden degrees of freedom. Phys. Rev. D 90(4), 044044 (2014). https://doi.org/10.1103/PhysRevD.90.044044, arXiv:1401.5262 [gr-qc]

  4. S.B. Giddings, Statistical physics of black holes as quantum-mechanical systems. Phys. Rev. D 88, 104013 (2013). https://doi.org/10.1103/PhysRevD.88.104013, arXiv:1308.3488 [hep-th]

  5. T. Jacobson, Thermodynamics of space-time: The Einstein equation of state. Phys. Rev. Lett. 75, 1260–1263 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. T. Padmanabhan, Gravity and the thermodynamics of horizons. Phys. Rep. 406, 49–125 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Padmanabhan, Thermodynamical aspects of gravity: new insights. Rep. Prog. Phys. 73, 046901 (2010)

    Article  ADS  Google Scholar 

  8. R. Bousso, The holographic principle. Rev. Mod. Phys. 74, 825 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)]

    Google Scholar 

  10. L. Susskind, The world as a hologram. J. Math. Phys. 36, 6377 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  11. G. ’t Hooft, Dimensional reduction in quantum gravity, Salamfest 1993:0284–296

    Google Scholar 

  12. E. Bianchi, T. De Lorenzo, M. Smerlak, Entanglement entropy production in gravitational collapse: covariant regularization and solvable models. JHEP 1506, 180 (2015)

    Google Scholar 

  13. L. McGough, H. Verlinde, Bekenstein-Hawking entropy as topological entanglement entropy. JHEP 1311, 208 (2013)

    Google Scholar 

  14. A. Averin, G. Dvali, C. Gomez, D. Lust, Gravitational black hole hair from event horizon supertranslations, arXiv:1601.03725 [hep-th]

  15. S.B. Giddings, Black holes and massive remnants. Phys. Rev. D 46, 1347 (1992). https://doi.org/10.1103/PhysRevD.46.1347, arXiv:hep-th/9203059

    Article  ADS  MathSciNet  Google Scholar 

  16. S.B. Giddings, Locality in quantum gravity and string theory. Phys. Rev. D 74, 106006 (2006). https://doi.org/10.1103/PhysRevD.74.106006, arXiv:hep-th/0604072

  17. S.B. Giddings, Models for unitary black hole disintegration. Phys. Rev. D 85, 044038 (2012). https://doi.org/10.1103/PhysRevD.85.044038, arXiv:1108.2015 [hep-th]

  18. S.W. Hawking, M.J. Perry, A. Strominger, Soft Hair on Black Holes, arXiv:1601.00921 [hep-th]

  19. G. ’t Hooft, Nucl. Phys. B335, 138 (1990) and Unitarity of the Black Hole S-Matrix, Utrecht preprint THU-93/04

    Google Scholar 

  20. G. ’t Hooft, Black hole unitarity and antipodal entanglement, arXiv:1601.03447 [gr-qc]

  21. A. Almheiri, D. Marolf, J. Polchinski, J. Sully, Black holes: complementarity or firewalls? JHEP 1302, 62 (2013)

    Google Scholar 

  22. Event Horizon Telescope, http://www.eventhorizontelescope.org/

  23. B.P. Abbott et al., Observation of gravitational waves from a binary black hole Merger [LIGO Scientific and Virgo Collaborations]. Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102, arXiv:1602.03837 [gr-qc]

  24. B.P. Abbott et al., GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence [LIGO Scientific and Virgo Collaborations]. Phys. Rev. Lett. 116(24), 241103 (2016), arXiv:1606.04855 [gr-qc]

  25. Longer term LHC schedule, http://lhc-commissioning.web.cern.ch/lhc-commissioning/schedule/LHC-long-term.htm

  26. A. Ashtekar, M. Bojowald, Black hole evaporation: a paradigm. Class. Quantum Gravity 22, 3349–3362 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  27. V. Balasubramanian, D. Marolf, M. Rozali, Information recovery from black holes. Gen. Relativ. Gravit. 38, 1529–1536 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  28. C. Bambi, D. Malafarina, L. Modesto, Non-singular quantum-inspired gravitational collapse. Phys. Rev. D 88, 044009 (2013)

    Google Scholar 

  29. C. Barceló, R. Carballo-Rubio, L.J. Garay, G. Jannes, The lifetime problem of evaporating black holes: mutiny or resignation. Class. Quantum Gravity 32, 035012 (2015)

    Article  ADS  Google Scholar 

  30. J.M. Bardeen, Black hole evaporation without an event horizon

    Google Scholar 

  31. B.J. Carr, J. Mureika, P. Nicolini, Sub-Planckian black holes and the generalized uncertainty principle. JHEP 1507, 052 (2015). https://doi.org/10.1007/JHEP07(2015)052, arXiv:1504.07637 [gr-qc]

  32. V.P. Frolov, Information loss problem and a black hole model with a closed apparent horizon

    Google Scholar 

  33. V.P. Frolov, G. Vilkovisky, Quantum gravity removes classical singularities and shortens the life of black holes, ICTP preprint IC/79/69, Trieste (1979)

    Google Scholar 

  34. V. Frolov, G. Vilkovisky, Spherically symmetric collapse in quantum gravity. Phys. Lett. B 106, 307–313 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  35. R. Gambini, J. Pullin, Loop quantization of the Schwarzschild black hole. Phys. Rev. Lett. 110, 211301 (2013)

    Google Scholar 

  36. S.B. Giddings, W.M. Nelson, Quantum emission from two-dimensional black holes. Phys. Rev. D 46, 2486–2496 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  37. P. Hájíček, C. Kiefer, Singularity avoidance by collapsing shells in quantum gravity. Int. J. Mod. Phys. D 10, 775–779 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  38. S.A. Hayward, Formation and evaporation of nonsingular black holes. Phys. Rev. Lett. 96, 031103 (2006)

    Google Scholar 

  39. S. Hossenfelder, L. Smolin, Conservative solutions to the black hole information problem. Phys. Rev. D 81, 064009 (2010)

    Google Scholar 

  40. M. Isi, J. Mureika, P. Nicolini, Self-completeness and the generalized uncertainty principle. JHEP 1311, 139 (2013). https://doi.org/10.1007/JHEP11(2013)139, arXiv:1310.8153 [hep-th]

  41. S. Mathur, The fuzzball proposal for black holes: an elementary review. Fortschritte der Physik 53(7–8), 793–827 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  42. S.D. Mathur, A model with no firewall

    Google Scholar 

  43. P.O. Mazur, E. Mottola, Gravitational vacuum condensate stars. Proc. Natl. Acad. Sci. U. S. A 101(26), 9545–50 (2004)

    Article  ADS  Google Scholar 

  44. L. Modesto, Disappearance of the black hole singularity in loop quantum gravity. Phys. Rev. D 70(12), 124009 (2004)

    Google Scholar 

  45. L. Modesto, Black hole interior from loop quantum gravity. Adv. High Energy Phys. 2008, 1–12 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  46. J.V. Narlikar, K. Appa Rao, N. Dadhich, High energy radiation from white holes. Nature 251, 591 (1974)

    Article  ADS  Google Scholar 

  47. P. Nicolini, A. Smailagic, E. Spallucci, Noncommutative geometry inspired Schwarzschild black hole. Phys. Lett. B 632, 547 (2006). https://doi.org/10.1016/j.physletb.2005.11.004, arXiv:gr-qc/0510112

    Article  ADS  MathSciNet  Google Scholar 

  48. P. Nicolini, Noncommutative black holes, the final appeal to quantum gravity: a review. Int. J. Mod. Phys. A 24, 1229 (2009). https://doi.org/10.1142/S0217751X09043353, arXiv:0807.1939 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  49. C. Rovelli, F. Vidotto, Planck stars. Int. J. Mod. Phys. D 23, 1442026 (2014)

    Article  ADS  Google Scholar 

  50. F. Saueressig, N. Alkofer, G. D’Odorico, F. Vidotto, Black holes in asymptotically safe gravity

    Google Scholar 

  51. E. Spallucci, A. Smailagic, P. Nicolini, Non-commutative geometry inspired higher-dimensional charged black holes. Phys. Lett. B 670, 449 (2009). https://doi.org/10.1016/j.physletb.2008.11.030, arXiv:0801.3519 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  52. C.R. Stephens, G. ’t Hooft, B.F. Whiting, Black hole evaporation without information loss. Class. Quantum Gravity 11, 621–647 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  53. H.M. Haggard, C. Rovelli, Black hole fireworks: quantum-gravity effects outside the horizon spark black to white hole tunneling. Phys. Rev. D 92, 104020 (2015)

    Google Scholar 

  54. A. Barrau, C. Rovelli, Planck star phenomenology. Phys. Lett. B 739, 405–409 (2014)

    Article  ADS  Google Scholar 

  55. A. Barrau, C. Rovelli, F. Vidotto, Fast radio bursts and white hole signals. Phys. Rev. D 90, 127503 (2014)

    Google Scholar 

  56. S.B. Giddings, Gravitational wave tests of quantum modifications to black hole structure – with post-GW150914 update, arXiv:1602.03622 [gr-qc]

  57. H.M. Haggard, C. Rovelli, Quantum gravity effects around Sagittarius A, arXiv:1607.00364 [gr-qc]

  58. G. Amelino-Camelia, Quantum spacetime phenomenology. Living Rev. Relativ. 16, 5 (2013)

    Google Scholar 

  59. S. Liberati, L. Maccione, Quantum gravity phenomenology: achievements and challenges

    Google Scholar 

  60. T. Jacobson, T.P. Sotiriou, Might black holes reveal their inner secrets?

    Google Scholar 

  61. A. Ashtekar, Introduction to Loop Quantum Gravity, PoSQGQGS2011 (2011) 1

    Google Scholar 

  62. R. Gambini, J. Pullin, Loops, Knots, Gauge Theories and Quantum Gravity, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  63. C. Rovelli, Quantum Gravity (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  64. C. Rovelli, F. Vidotto, Covariant Loop Quantum Gravity (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  65. T. Thiemann, Modern Canonical Quantum General Relativity (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  66. M. Christodoulou, C. Rovelli, S. Speziale, I. Vilensky, Realistic observable in background-free quantum gravity: the Planck-star tunnelling-time

    Google Scholar 

  67. E. Bianchi, R.C. Myers, On the architecture of spacetime geometry

    Google Scholar 

  68. E. Bianchi, Black hole entropy from graviton entanglement

    Google Scholar 

  69. M. Christodoulou, C. Rovelli, S. Speziale, Maximal extrinsic curvature and maximum boost, to appear

    Google Scholar 

  70. R. Haag, Local Quantum Physics, Fields, Particles, Algebras (Springer, Berlin, 1996)

    Chapter  Google Scholar 

  71. W. Donnelly, S.B. Giddings, Diffeomorphism-invariant observables and their nonlocal algebra. Phys. Rev. D 93(2), 024030 (2016). https://doi.org/10.1103/PhysRevD.93.024030, arXiv:1507.07921 [hep-th]

  72. W. Donnelly, S.B. Giddings, Observables, gravitational dressing, and obstructions to locality and subsystems, arXiv:1607.01025 [hep-th]

  73. S.B. Giddings, Hilbert space structure in quantum gravity: an algebraic perspective. JHEP 1512, 099 (2015). https://doi.org/10.1007/JHEP12(2015)099, arXiv:1503.08207 [hep-th]

    Article  Google Scholar 

  74. C.G. Callan, S.B. Giddings, J.A. Harvey, A. Strominger, Evanescent black holes. Phys. Rev. D 45, 1005 (1992). https://doi.org/10.1103/PhysRevD.45.R1005, arXiv:hep-th/9111056

    Article  ADS  MathSciNet  Google Scholar 

  75. S.B. Giddings, Black hole information, unitarity, and nonlocality. Phys. Rev. D 74, 106005 (2006). https://doi.org/10.1103/PhysRevD.74.106005, arXiv:hep-th/0605196

  76. S.B. Giddings, Quantization in black hole backgrounds. Phys. Rev. D 76, 064027 (2007). https://doi.org/10.1103/PhysRevD.76.064027, arXiv:0703116 [hep-th]

  77. S.B. Giddings, Is string theory a theory of quantum gravity? Found. Phys. 43, 115 (2013). https://doi.org/10.1007/s10701-011-9612-x, arXiv:1105.6359 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  78. S.B. Giddings, Universal quantum mechanics. Phys. Rev. D 78, 084004 (2008). https://doi.org/10.1103/PhysRevD.78.084004, arXiv:0711.0757 [quant-ph]

  79. S.B. Giddings, (Non) perturbative gravity, nonlocality, and nice slices. Phys. Rev. D 74, 106009 (2006). https://doi.org/10.1103/PhysRevD.74.106009, arXiv:hep-th/0606146

  80. S.B. Giddings, The gravitational S-matrix: Erice lectures. Subnucl. Ser. 48, 93 (2013). https://doi.org/10.1142/9789814522489_0005, arXiv:1105.2036 [hep-th]

  81. S.B. Giddings, Black holes, quantum information, and unitary evolution. Phys. Rev. D 85, 124063 (2012). https://doi.org/10.1103/PhysRevD.85.124063, arXiv:1201.1037 [hep-th]

  82. S.B. Giddings, Y. Shi, Quantum information transfer and models for black hole mechanics. Phys. Rev. D 87(6), 064031 (2013). https://doi.org/10.1103/PhysRevD.87.064031, arXiv:1205.4732 [hep-th]

  83. L. Susskind, The transfer of entanglement: the case for firewalls, arXiv:1210.2098 [hep-th]

  84. S.D. Mathur, Fuzzballs and the information paradox: a summary and conjectures, arXiv:0810.4525 [hep-th]

  85. S.B. Giddings, Nonlocality versus complementarity: a conservative approach to the information problem. Class. Quantum Gravity 28, 025002 (2011). https://doi.org/10.1088/0264-9381/28/2/025002, arXiv:0911.3395 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  86. S.B. Giddings, R.A. Porto, The gravitational S-matrix. Phys. Rev. D 81, 025002 (2010). https://doi.org/10.1103/PhysRevD.81.025002, arXiv:0908.0004 [hep-th]

  87. S.B. Giddings, Nonviolent information transfer from black holes: a field theory parametrization. Phys. Rev. D 88(2), 024018 (2013). https://doi.org/10.1103/PhysRevD.88.024018, arXiv:1302.2613 [hep-th]

  88. S.B. Giddings, Y. Shi, Effective field theory models for nonviolent information transfer from black holes. Phys. Rev. D 89(12), 124032 (2014). https://doi.org/10.1103/PhysRevD.89.124032, arXiv:1310.5700 [hep-th]

  89. S.B. Giddings, Quantum mechanics of black holes, arXiv:hep-th/9412138

  90. S.B. Giddings, Modulated Hawking radiation and a nonviolent channel for information release. Phys. Lett. B 738, 92 (2014). https://doi.org/10.1016/j.physletb.2014.08.070, arXiv:1401.5804 [hep-th]

    Article  ADS  Google Scholar 

  91. V.P. Frolov, Cosmic strings and energy mining from black holes. Int. J. Mod. Phys. A 17, 2673 (2002). https://doi.org/10.1142/S0217751X0201159X

    Article  ADS  MathSciNet  Google Scholar 

  92. V.P. Frolov, D. Fursaev, Mining energy from a black hole by strings. Phys. Rev. D 63, 124010 (2001). https://doi.org/10.1103/PhysRevD.63.124010, arXiv:hep-th/0012260

  93. A.E. Lawrence, E.J. Martinec, Black hole evaporation along macroscopic strings. Phys. Rev. D 50, 2680 (1994). https://doi.org/10.1103/PhysRevD.50.2680, arXiv:hep-th/9312127

    Article  ADS  MathSciNet  Google Scholar 

  94. W.G. Unruh, R.M. Wald, How to mine energy from a black hole. Gen. Relativ. Gravit. 15, 195 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  95. S.B. Giddings, Hawking radiation, the Stefan-Boltzmann law, and unitarization. Phys. Lett. B 754, 39 (2016). https://doi.org/10.1016/j.physletb.2015.12.076, arXiv:1511.08221 [hep-th]

    Article  ADS  Google Scholar 

  96. S. Britzen, Talk at this meeting

    Google Scholar 

  97. S.B. Giddings, Possible observational windows for quantum effects from black holes. Phys. Rev. D 90(12), 124033 (2014). https://doi.org/10.1103/PhysRevD.90.124033, arXiv:1406.7001 [hep-th]

  98. S.B. Giddings, D. Psaltis, to appear

    Google Scholar 

  99. S.B. Giddings, D. Psaltis, Event horizon telescope observations as probes for quantum structure of astrophysical black holes, arXiv:1606.07814 [astro-ph.HE]

  100. G. ’t Hooft, An ambiguity of the equivalence principle and Hawking’s temperature. J. Geom. Phys. 1, 45–52 (1984)

    Google Scholar 

  101. G. ’t Hooft, On the quantum structure of a black hole. Nucl. Phys. B 256, 727 (1985). https://doi.org/10.1016/0550-3213(85)90418-3

    Article  ADS  MathSciNet  Google Scholar 

  102. G. ’t Hooft, Strings from gravity. Phys. Scr. T 15, 143 (1987). https://doi.org/10.1088/0031-8949/1987/T15/019

    Article  ADS  MathSciNet  Google Scholar 

  103. G. ’t Hooft, The black hole interpretation of string theory. Nucl. Phys. B 335, 138 (1990). https://doi.org/10.1016/0550-3213(90)90174-C

    Article  ADS  MathSciNet  Google Scholar 

  104. G. ’t Hooft, Unitarity of the black hole scattering matrix, In Columbia 1992, Proceedings, Quantum coherence and reality 158–171, and Utrecht U. - THU-93-04 (93,rec.Mar.) p. 17. https://doi.org/10.1142/9789814533294

  105. G. ’t Hooft, The Scattering matrix approach for the quantum black hole: an overview. Int. J. Mod. Phys. A 11, 4623 (1996). https://doi.org/10.1142/S0217751X96002145, arXiv:gr-qc/9607022

    Article  ADS  MathSciNet  Google Scholar 

  106. P.C. Aichelburg, R.U. Sexl, On the Gravitational field of a massless particle. Gen. Relativ. Gravit. 2, 303 (1971). https://doi.org/10.1007/BF00758149

    Article  ADS  Google Scholar 

  107. T. Dray, G. ’t Hooft, The gravitational shock wave of a massless particle. Nucl. Phys. B 253, 173 (1985). https://doi.org/10.1016/0550-3213(85)90525-5

    Article  ADS  MathSciNet  Google Scholar 

  108. G. ’t Hooft, The quantum black hole as a hydrogen atom: microstates without strings attached, arXiv:1605.05119 [gr-qc]

  109. Y. Kiem, H.L. Verlinde, E.P. Verlinde, Black hole horizons and complementarity. Phys. Rev. D 52, 7053 (1995). https://doi.org/10.1103/PhysRevD.52.7053, arXiv:hep-th/9502074

    Article  ADS  MathSciNet  Google Scholar 

  110. E. Verlinde, H. Verlinde, Black hole entanglement and quantum error correction. JHEP 1310, 107 (2013). https://doi.org/10.1007/JHEP10(2013)107, arXiv:1211.6913 [hep-th]

  111. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, New dimensions at a millimeter to a Fermi and superstrings at a TeV. Phys. Lett. B 436, 257 (1998), arXiv:hep-ph/9804398

    Article  ADS  Google Scholar 

  112. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, The Hierarchy problem and new dimensions at a millimeter. Phys. Lett. B 429, 263 (1998), arXiv:hep-ph/9803315

    Article  ADS  Google Scholar 

  113. N. Arkani-Hamed, S. Dimopoulos, G.R. Dvali, Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity. Phys. Rev. D 59, 086004 (1999), arXiv:hep-ph/9807344

  114. L. Randall, R. Sundrum, A Large mass hierarchy from a small extra dimension. Phys. Rev. Lett. 83, 3370 (1999). [hep-ph/9905221]

    Article  ADS  MathSciNet  Google Scholar 

  115. L. Randall, R. Sundrum, An alternative to compactification. Phys. Rev. Lett. 83, 4690 (1999), arXiv:hep-th/9906064

    Article  ADS  MathSciNet  Google Scholar 

  116. P.C. Argyres, S. Dimopoulos, J. March-Russell, Black holes and submillimeter dimensions. Phys. Lett. B 441, 96 (1998), arXiv:hep-th/9808138

    Article  ADS  MathSciNet  Google Scholar 

  117. T. Banks, W. Fischler, A Model for high-energy scattering in quantum gravity, arXiv:hep-th/9906038

  118. S. Dimopoulos, G.L. Landsberg, Black holes at the LHC. Phys. Rev. Lett. 87, 161602 (2001), arXiv:hep-ph/0106295

  119. S.B. Giddings, S.D. Thomas, High-energy colliders as black hole factories: the end of short distance physics. Phys. Rev. D 65, 056010 (2002), arXiv:hep-ph/0106219

  120. J.L. Feng, A.D. Shapere, Black hole production by cosmic rays. Phys. Rev. Lett. 88, 021303 (2002), arXiv:hep-ph/0109106

  121. J. Alvarez-Muniz, J.L. Feng, F. Halzen, T. Han, D. Hooper, Detecting microscopic black holes with neutrino telescopes. Phys. Rev. D 65, 124015 (2002), arXiv:hep-ph/0202081

  122. M. Kowalski, A. Ringwald, H. Tu, Black holes at neutrino telescopes. Phys. Lett. B 529, 1 (2002), arXiv:hep-ph/0201139

    Article  ADS  Google Scholar 

  123. J. Mureika, P. Nicolini, E. Spallucci, Could any black holes be produced at the LHC? Phys. Rev. D 85, 106007 (2012), arXiv:1111.5830 [hep-ph]

  124. D.M. Gingrich, Noncommutative geometry inspired black holes in higher dimensions at the LHC. JHEP 1005, 022 (2010), arXiv:1003.1798 [hep-ph]

  125. P. Nicolini, E. Winstanley, Hawking emission from quantum gravity black holes. JHEP 1111, 075 (2011). arXiv:1108.4419 [hep-ph]

  126. T.G. Rizzo, Noncommutative Inspired Black Holes in Extra Dimensions. JHEP 0609, 021 (2006), arXiv:hep-ph/0606051

    Article  ADS  MathSciNet  Google Scholar 

  127. G. ’t Hooft, Diagonalizing the black hole information retrieval process, arXiv:1509.01695 [gr-qc]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kaminski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

’t Hooft, G. et al. (2018). Panel Discussion, “The Duel”: The Good, the Bad, and the Ugly of Gravity and Information. In: Nicolini, P., Kaminski, M., Mureika, J., Bleicher, M. (eds) 2nd Karl Schwarzschild Meeting on Gravitational Physics. Springer Proceedings in Physics, vol 208. Springer, Cham. https://doi.org/10.1007/978-3-319-94256-8_2

Download citation

Publish with us

Policies and ethics