Skip to main content

Initiating the Breath: The Drive to Breathe, Muscle Pump

  • Chapter
  • First Online:
Pulmonary Function Testing

Part of the book series: Respiratory Medicine ((RM))

Abstract

The initiation of a breath is the consequence of the interaction of a complex set of neural inputs to the respiratory centers of the brain and the mechanical properties of the ventilatory pump. Automatic and volitional elements must be considered, as well as behavioral effects resulting from symptoms and psychological factors. A range of pathological conditions may alter different pieces of the respiratory system resulting in changes in respiratory pattern and, in some cases, gas exchange. This chapter will outline the physiology of the key neuromechanical components of the respiratory system responsible for initiation of the breath and review the tests that may be used to assess the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Banzett RB, Lansing RW, Brown R, et al. “Air hunger” from increased PCO2 persists after complete neuromuscular block in humans. Respir Physiol. 1990;81(1):18.

    Article  Google Scholar 

  • Banzett RB, Lansing RW, Reid MB, Adams L, Brown R. “Air hunger” arising from increased PCO2 in mechanically ventilated quadriplegics. Respir Physiol. 1989;76:53–68.

    Article  CAS  Google Scholar 

  • Brusasco V, Crapo R, Viegi G, American Thoracic Society, European Respiratory Society. Coming together: the ATS/ERS consensus on clinical pulmonary function testing. Eur Respir J. 2005;26:1–2.

    Article  CAS  Google Scholar 

  • Burgess KR, Whitelaw WA. Reducing ventilatory response to carbon dioxide by breathing cold air. Am Rev Respir Dis. 1984;129:687–90.

    Article  CAS  Google Scholar 

  • Burke RE. Motor units: anatomy, physiology and functional organization. In: Brookhart JM, Mountcastle VB, editors. Handbook of physiology, Sec. 1, Vol. III, Part 1, The nervous system. Bethesda: American Physiological Society; 1981. p. 345–422.

    Google Scholar 

  • Chronos N, Adams L, Guz A. Effect of hyperoxia and hypoxia on exercise-induced breathlessness in normal subjects. Clin Sci. 1988;74:531–7.

    Article  CAS  Google Scholar 

  • Datta AK, Shea SA, Horner RL, Guz A. The influence of induced hypocapnia and sleep on the endogenous respiratory rhythm in humans. J Physiol. 1991;440:17–33.

    Article  CAS  Google Scholar 

  • Dick TE, Kong FJ, Berger AJ. Correlation of recruitment order with axonal conduction velocity for supraspinally driven motor units. J Neurophysiol. 1987;57:245–59.

    Article  CAS  Google Scholar 

  • Edström L, Kugelberg E. Histochemical composition, distribution of fibers and fatiguability of single motor units. J Neurol Neurosurg Psychiatry. 1968;31:424–33.

    Article  Google Scholar 

  • Enad JG, Fournier M, Sieck GC. Oxidative capacity and capillary density of diaphragm motor units. J Appl Physiol. 1989;67:620–7.

    Article  CAS  Google Scholar 

  • Fournier M, Sieck GC. Mechanical properties of muscle units in the cat diaphragm. J Neurophysiol. 1988;59:1055–66.

    Article  CAS  Google Scholar 

  • Gandevia SC, Rothwell JC. Activation of the human diaphragm from the motor cortex. J Physiol. 1987;384:109–18.

    Article  CAS  Google Scholar 

  • Geiger PC, Cody MJ, Macken RL, Sieck GC. Maximum specific force depends on myosin heavy chain content in rat diaphragm muscle fibers. J Appl Physiol. 2000;89:695–703.

    Article  CAS  Google Scholar 

  • Geiger PC, Cody MJ, Sieck GC. Force-calcium relationship depends on myosin heavy chain and troponin isoforms in rat diaphragm muscle fibers. J Appl Physiol. 1999;87:1894–900.

    Article  CAS  Google Scholar 

  • Henneman E. Relation between size of neurons and their susceptibility to discharge. Science. 1957;126:1345–6.

    Article  CAS  Google Scholar 

  • Liddell EGT, Sherrington CS. Recruitment and some other factors of reflex inhibition. Proc R Soc Lond (Biol). 1925;97:488–518.

    Article  Google Scholar 

  • Liss HP, Grant BJB. The effect of nasal flow on breathlessness in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1988;137:1285–8.

    Article  CAS  Google Scholar 

  • Lois JH, Rice CD, Yates BJ. Neural circuits controlling diaphragm function in the cat revealed by transneuronal tracing. J Appl Physiol (1985). 2009;106:138–52.

    Article  Google Scholar 

  • Manning HL, Basner R, Ringler J, et al. Effect of chest wall vibration on breathlessness in normal subjects. J Appl Physiol. 1991;71:175–81.

    Article  CAS  Google Scholar 

  • Manning HL, Shea SA, Schwartzstein RM, Lansing RW, Brown R, Banzett RB. Reduced tidal volume increases ‘air hunger’ at fixed PCO2 in ventilated quadriplegics. Respir Physiol. 1992;90:19–30.

    Article  CAS  Google Scholar 

  • Marazzini L, Cavestri R, Gori D, Gatti L, Longhini E. Difference between mouth and esophageal occlusion pressure during CO2 rebreathing in chronic obstructive pulmonary disease. Am Rev Respir Dis. 1978;118:1027–33.

    CAS  PubMed  Google Scholar 

  • Matthews AW, Howell JB. The rate of isometric inspiratory pressure development as a measure of responsiveness to carbon dioxide in man. Clin Sci Mol Med. 1975;49:57–68.

    CAS  PubMed  Google Scholar 

  • McCloskey DI, Gandevia S, Potter EK, Colebatch JG. Muscle sense and effort; motor commands and judgments about muscular contractions. In: Desmedt JE, editor. Motor control mechanisms in health and disease. New York: Raven Press; 1983.

    Google Scholar 

  • Miller MR, Crapo R, Hankinson J, et al; ATS/ERS Task Force. General considerations for lung function testing. Eur Respir J 2005;26:153–61.

    Google Scholar 

  • Nattie E, Li A. Central chemoreception is a complex system function that involves multiple brain stem sites. J Appl Physiol (1985). 2009;106:1464–6.

    Article  CAS  Google Scholar 

  • O’Donnell DE, Sanii R, Anthonisen NR, Younes M. Effect of dynamic airway compression on breathing pattern and respiratory sensation in severe chronic obstructive pulmonary disease. Am Rev Respir Dis. 1987;135:912–8.

    Article  Google Scholar 

  • Rebuck AS, Campbell EJM. A clinical method for assessing the ventilatory response to hypoxia. Am Rev Respir Dis. 1974;109:345–54.

    CAS  PubMed  Google Scholar 

  • Schwartzstein RM, Lahive K, Pope A, Weinberger SE, Weiss JW. Cold facial stimulation reduces breathlessness induced in normal subjects. Am Rev Respir Dis. 1987;136:58–61.

    Article  CAS  Google Scholar 

  • Schwartzstein RM, Manning HL, Weiss JW, Weinberger SE. Dyspnea: a sensory experience. Lung. 1990;169:185–99.

    Article  Google Scholar 

  • Seven YB, Mantilla CB, Sieck GC. Recruitment of rat diaphragm motor units across motor behaviors with different levels of diaphragm activation. J Appl Physiol. 2014;117:1308–16.

    Article  Google Scholar 

  • Shea SA, Andres LP, Guz A, Banzett RB. Respiratory sensations in subjects who lack a ventilatory response to CO2. Respir Physiol. 1993;93(2):203–19.

    Article  CAS  Google Scholar 

  • Sieck GC, Han YS, Prakash YS, Jones KA. Cross-bridge cycling kinetics, actomyosin ATPase activity and myosin heavy chain isoforms in skeletal and smooth respiratory muscles. Comp Biochem Physiol. 1998;119:435–50.

    Article  CAS  Google Scholar 

  • Sieck GC. Neural control of the inspiratory pump. NIPS. 1991;6:260–4.

    Google Scholar 

  • Sieck GC, Fournier M. Diaphragm motor unit recruitment during ventilatory and nonventilatory behaviors. J Appl Physiol. 1989;66:2539–45.

    Article  CAS  Google Scholar 

  • Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science. 1991;254:726–9.

    Article  CAS  Google Scholar 

  • Spence DPS, Graham DR, Ahmed J, Rees K, Pearson MG, Calverley PMA. Does cold air affect exercise capacity and dyspnea in stable chronic obstructive pulmonary disease? Chest. 1993;103:693–6.

    Article  CAS  Google Scholar 

  • Whitelaw WA, Derenne JP, Milic-Emili J. Occlusion pressure as a measure of respiratory center output in conscious man. Respir Physiol. 1975;23:181–99.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gary C. Sieck or Richard M. Schwartzstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Richards, J., Fogarty, M.J., Sieck, G.C., Schwartzstein, R.M. (2018). Initiating the Breath: The Drive to Breathe, Muscle Pump. In: Kaminsky, D., Irvin, C. (eds) Pulmonary Function Testing. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-94159-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94159-2_8

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-94158-5

  • Online ISBN: 978-3-319-94159-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics