Skip to main content

Breathing Out: Forced Exhalation, Airflow Limitation

  • Chapter
  • First Online:
Pulmonary Function Testing

Part of the book series: Respiratory Medicine ((RM))

Abstract

The concept of measuring expired lung volumes to assess lung function has existed since the late seventeenth century. Spirometry in its current form is a versatile and informative assessment of pulmonary ventilation that does not require highly specialised equipment, making it the most common and accessible lung function test.

Although spirometry is effort-dependent and can be a physically demanding test (particularly for patients with severe lung disease), the majority of individuals can achieve technically acceptable and repeatable results with the correct coaching from appropriately trained operators. In isolation, spirometry cannot diagnose specific pathology (with the exception of asthma), but, instead, it can identify patterns of ventilatory impairment. However, it remains the mainstay of physiological assessment and a primary outcome for disease management and clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Selected References

  • Anderson SD, Brannan J, Spring J, et al. A new method for bronchial-provocation testing in asthmatic subjects using a dry powder of mannitol. Am J Respir Crit Care Med. 1997;156(3 Pt 1):758–65.

    Article  CAS  Google Scholar 

  • British Thoracic Society & Association for Respiratory Technology and Physiology. Guidelines for the measurement of respiratory function. Respir Med. 1994;88:165–94.

    Article  Google Scholar 

  • Clay RD, Iyer VN, Reddy DR, Siontis B, Scanlon PD. The “complex restrictive” pulmonary function pattern: clinical and radiologic analysis of a common but previously undescribed restrictive pattern. Chest. 2017;152:1258–65.

    Article  Google Scholar 

  • Cooper BG. Spirometry standards and FEV1/FVC repeatability. Prim Care Respir J. 2010;19:292–4.

    Article  Google Scholar 

  • Cooper BG. An update on contraindications for lung function testing. Thorax. 2011;66:714–23.

    Article  Google Scholar 

  • Cooper BG, Hunt JH, Kendrick AH, et al. ARTP practical handbook of spirometry. 3rd ed. London: Association for Respiratory Technology and Physiology; 2017. ISBN: 0-9536898-6-7

    Google Scholar 

  • Cotes JE, Chinn DJ, Miller MR. Lung function. 6th ed. Malden, MA: Blackwell Publishing; 2006. ISBN: 0632064935

    Book  Google Scholar 

  • Dilektasli AG, Porszasz J, Casaburi R, et al. A novel spirometric measure identifies mild COPD unidentified by standard criteria. Chest. 2016;150(5):1080–90.

    Article  Google Scholar 

  • Fletcher C, Peto R. The natural history of chronic airflow obstruction. Br Med J. 1977;1:1645–8.

    Article  CAS  Google Scholar 

  • Gardner ZE, Ruppel GL, Kaminsky DA. Grading the severity of obstruction in mixed obstructive-restrictive lung disease. Chest. 2011;140:598–603.

    Article  Google Scholar 

  • Hansen JE, Sun XG, Adame D, Wasserman K. Argument for changing criteria for bronchodilator responsiveness. Respir Med. 2008;102:1777–83.

    Article  Google Scholar 

  • Hughes JMB, Pride NB. Lung function tests: physiological principle and clinical applications. London: Bailliere Tindall; 1999. ISBN: 0702023507

    Google Scholar 

  • Kendrick AH, Johns DP, Leeming JP. Infection control of lung function equipment: a practical approach. Respir Med. 2003;97:1163–79.

    Article  CAS  Google Scholar 

  • Laszlo G. Pulmonary function: a guide for clinicians. New York: Cambridge University Press; 1994. ISBN: 0521446791

    Google Scholar 

  • Mannino DM, Diaz-Guzman E. Interpreting lung function using 80% predicted and fixed thresholds identifies patients at increased risk of mortality. Chest. 2012;141:73–80.

    Article  Google Scholar 

  • Miller MR, Crapo R, Hankinson J, et al. General considerations for lung function testing. Eur Respir J. 2005;26:153–61.

    Article  CAS  Google Scholar 

  • Miller MR, Hankinson J, Brusasko V, et al. Standardisation of spirometry. Eur Respir J. 2005;26:319–38.

    Article  CAS  Google Scholar 

  • Miller MR, Quanjer PH, Swanney PM, et al. Interpreting lung function data using 80% predicted and fixed thresholds misclassifies more than 20% of patients. Chest. 2011;139:52–9.

    Article  Google Scholar 

  • Miller MR. Does the use of per cent predicted have any evidence base? Eur Respir J. 2015;45(2):322–3.

    Article  Google Scholar 

  • Morris ZQ, Coz A, Starosta D. An isolated reduction of the FEV3/FVC ratio is an indicator of mild lung injury. Chest. 2013;144(4):1117–23.

    Article  Google Scholar 

  • Pellegrino R, Viegi G, Brusasco V, et al. Interpretive strategies for lung function tests. Eur Respir J. 2005;26:948–68.

    Article  CAS  Google Scholar 

  • Quanjer PH, Stanojevic S, Cole TJ, et al. Multi-ethnic reference values for spirometry for the 3-95 year age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324–43.

    Article  Google Scholar 

  • Quanjer PH, Brazzale DJ, Boros PW, et al. Implications of adopting the Global Lungs Initiative 2012 all-age reference equations for spirometry. Eur Respir J. 2013;42(4):1046–54.

    Article  Google Scholar 

  • Quanjer PH, Pretto JJ, Brazzale DJ, et al. Grading the severity of airflow obstruction: new wine in old bottles. Eur Respir J. 2014;43(2):505–12.

    Article  Google Scholar 

  • Quanjer PH, Cooper B, Ruppel GL, et al. Defining airflow obstruction. Eur Respir J. 2015;45:561–2.

    Article  Google Scholar 

  • Schilder DP, Roberts A, Fry DL. Effect of gas density and viscosity on the maximal expiratory flow-volume relationship. J Clin Invest. 1963;42(11):1705–13.

    Article  CAS  Google Scholar 

  • Seed L, Wilson D, Coates AL. Children should not be treated like little adults in the PFT lab. Respir Care. 2012;57:61–74.

    Article  Google Scholar 

  • Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Eur Respir J. 2017;195:557–82.

    CAS  Google Scholar 

  • Ward H, Cooper BG, Miller MR. Improved criterion for assessing lung function reversibility. Chest. 2015;148(4):877–86.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Stockley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stockley, J.A., Cooper, B.G. (2018). Breathing Out: Forced Exhalation, Airflow Limitation. In: Kaminsky, D., Irvin, C. (eds) Pulmonary Function Testing. Respiratory Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-94159-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94159-2_6

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-94158-5

  • Online ISBN: 978-3-319-94159-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics