Skip to main content

Sharpness of the Satisfiability Threshold for Non-uniform Random k-SAT

  • Conference paper
  • First Online:
Theory and Applications of Satisfiability Testing – SAT 2018 (SAT 2018)

Abstract

We study non-uniform random k-SAT on n variables with an arbitrary probability distribution \(\varvec{p}\) on the variable occurrences. The number \(t=t(n)\) of randomly drawn clauses at which random formulas go from asymptotically almost surely (a. a. s.) satisfiable to a. a. s. unsatisfiable is called the satisfiability threshold. Such a threshold is called sharp if it approaches a step function as n increases. We show that a threshold t(n) for random k-SAT with an ensemble \((\varvec{p}_n)_{n\in \mathbb {N}}\) of arbitrary probability distributions on the variable occurrences is sharp if \(\Vert \varvec{p}_n\Vert _2^2=\mathcal {O}_n\left( {t}^{-\frac{2}{k}}\right) \) and \(\Vert \varvec{p}_n\Vert _{\infty }=o_n\left( {t}^{-\frac{k}{2k-1}}\cdot \log ^{-\frac{k-1}{2k-1}}{t}\right) \).

This result generalizes Friedgut’s sharpness result from uniform to non-uniform random k-SAT and implies sharpness for thresholds of a wide range of random k-SAT models with heterogeneous probability distributions, for example such models where the variable probabilities follow a power-law distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the paper we let \(x\sim \pi \) denote that the random variable x is drawn from the probability distribution with density \(\pi \).

References

  1. Achlioptas, D., Kirousis, L.M., Kranakis, E., Krizanc, D.: Rigorous results for random (2+p)-SAT. Theor. Comput. Sci. 265(1–2), 109–129 (2001)

    Article  MathSciNet  Google Scholar 

  2. Alistarh, D., Sauerwald, T., Vojnović, M.: Lock-free algorithms under stochastic schedulers. In: 34th Symposium on Principles of Distributed Computing (PODC), pp. 251–260 (2015)

    Google Scholar 

  3. Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J.: The fractal dimension of SAT formulas. In: 7th International Joint Conference on Automated Reasoning (IJCAR), pp. 107–121 (2014)

    Google Scholar 

  4. Ansótegui, C., Bonet, M.L., Giráldez-Cru, J., Levy, J.: On the classification of industrial SAT families. In: 18th International Conference of the Catalan Association for Artificial Intelligence (CCIA), pp. 163–172 (2015)

    Google Scholar 

  5. Ansótegui, C., Bonet, M.L., Levy, J.: On the structure of industrial SAT instances. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 127–141. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04244-7_13

    Chapter  Google Scholar 

  6. Ansótegui, C., Bonet, M.L., Levy, J.: Towards industrial-like random SAT instances. In: 21st International Joint Conference on Artificial Intelligence (IJCAI), pp. 387–392 (2009)

    Google Scholar 

  7. Ansótegui, C., Giráldez-Cru, J., Levy, J.: The community structure of SAT formulas. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 410–423. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31612-8_31

    Chapter  MATH  Google Scholar 

  8. Bapst, V., Coja-Oghlan, A.: The condensation phase transition in the regular k-SAT model. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, pp. 22:1–22:18 (2016)

    Google Scholar 

  9. Boufkhad, Y., Dubois, O., Interian, Y., Selman, B.: Regular random \(k\)-SAT: properties of balanced formulas. J. Autom. Reason. 35(1–3), 181–200 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Bradonjic, M., Perkins, W.: On sharp thresholds in random geometric graphs. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, pp. 500–514 (2014)

    Google Scholar 

  11. Bringmann, K.: Why walking the dog takes time: Frechet distance has no strongly subquadratic algorithms unless SETH fails. In: 55th Symposium on Foundations of Computer Science (FOCS), pp. 661–670 (2014)

    Google Scholar 

  12. Chvatal, V., Reed, B.: Mick gets some (the odds are on his side). In: 33rd Symposium on Foundations of Computer Science (FOCS), pp. 620–627 (1992)

    Google Scholar 

  13. Coja-Oghlan, A.: The asymptotic \(k\)-SAT threshold. In: 46th Symposium on Theory of Computing (STOC), pp. 804–813 (2014)

    Google Scholar 

  14. Coja-Oghlan, A., Panagiotou, K.: The asymptotic \(k\)-SAT threshold. Adv. Math. 288, 985–1068 (2016)

    Article  MathSciNet  Google Scholar 

  15. Coja-Oghlan, A., Wormald, N.: The number of satisfying assignments of random regular k-SAT formulas. CoRR abs/1611.03236 (2016)

    Google Scholar 

  16. Cook, S.A.: The complexity of theorem-proving procedures. In: 3rd Symposium on Theory of Computing (STOC), pp. 151–158 (1971)

    Google Scholar 

  17. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: 52nd Symposium on Foundations of Computer Science (FOCS), pp. 150–159 (2011)

    Google Scholar 

  18. Díaz, J., Kirousis, L.M., Mitsche, D., Pérez-Giménez, X.: On the satisfiability threshold of formulas with three literals per clause. Theoret. Comput. Sci. 410(30–32), 2920–2934 (2009)

    Article  MathSciNet  Google Scholar 

  19. Ding, J., Sly, A., Sun, N.: Proof of the satisfiability conjecture for large k. In: 47th Symposium on Theory of Computing (STOC), pp. 59–68 (2015)

    Google Scholar 

  20. Fortuin, C.M., Kasteleyn, P.W., Ginibre, J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 22(2), 89–103 (1971)

    Article  MathSciNet  Google Scholar 

  21. Friedgut, E.: Sharp thresholds of graph properties, and the \(k\)-SAT problem. J. Am. Math. Soc. 12(4), 1017–1054 (1999)

    Article  MathSciNet  Google Scholar 

  22. Friedgut, E.: Hunting for sharp thresholds. Random Struct. Algorithms 26(1–2), 37–51 (2005)

    Article  MathSciNet  Google Scholar 

  23. Friedrich, T., Krohmer, A., Rothenberger, R., Sauerwald, T., Sutton, A.M.: Bounds on the satisfiability threshold for power law distributed random SAT. In: 25th European Symposium on Algorithms (ESA), pp. 37:1–37:15 (2017)

    Google Scholar 

  24. Friedrich, T., Krohmer, A., Rothenberger, R., Sutton, A.M.: Phase transitions for scale-free SAT formulas. In: 31st Conference on Artificial Intelligence (AAAI), pp. 3893–3899 (2017)

    Google Scholar 

  25. Giráldez-Cru, J., Levy, J.: A modularity-based random SAT instances generator. In: 24th International Joint Conference on Artificial Intelligence (IJCAI), pp. 1952–1958 (2015)

    Google Scholar 

  26. Giráldez-Cru, J., Levy, J.: Locality in random SAT instances. In: 26th International Joint Conference on Artificial Intelligence (IJCAI), pp. 638–644 (2017)

    Google Scholar 

  27. Goerdt, A.: A threshold for unsatisfiability. J. Comput. Syst. Sci. 53(3), 469–486 (1996)

    Article  MathSciNet  Google Scholar 

  28. Hajiaghayi, M.T., Sorkin, G.B.: The satisfiability threshold of random 3-SAT is at least 3.52. Technical report, RC22942, IBM, October 2003

    Google Scholar 

  29. Impagliazzo, R., Paturi, R.: On the complexity of \(k\)-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  Google Scholar 

  30. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? In: 39th Symposium on Foundations of Computer Science (FOCS), pp. 653–663 (1998)

    Google Scholar 

  31. Kaporis, A.C., Kirousis, L.M., Lalas, E.G.: The probabilistic analysis of a greedy satisfiability algorithm. Random Struct. Algorithms 28(4), 444–480 (2006)

    Article  MathSciNet  Google Scholar 

  32. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a Symposium on the Complexity of Computer Computations, held 20–22 March 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, pp. 85–103 (1972)

    Google Scholar 

  33. Levin, L.A.: Universal sorting problems. Prob. Inf. Transm. 9, 265–266 (1973)

    Google Scholar 

  34. Mézard, M., Parisi, G., Zecchina, R.: Analytic and algorithmic solution of random satisfiability problems. Science 297(5582), 812–815 (2002)

    Article  Google Scholar 

  35. Mitchell, D.G., Selman, B., Levesque, H.J.: Hard and easy distributions of SAT problems. In: 10th Conference on Artificial Intelligence (AAAI), pp. 459–465 (1992)

    Google Scholar 

  36. Monasson, R., Zecchina, R.: Statistical mechanics of the random \(k\)-satisfiability model. Phys. Rev. E 56, 1357–1370 (1997)

    Article  MathSciNet  Google Scholar 

  37. Monasson, R., Zecchina, R., Kirkpatric, S., Selman, B., Troyansky, L.: Phase transition and search cost in the 2+ p-SAT problem. In: 4th Workshop on Physics and Computation, Boston, MA (1996)

    Google Scholar 

  38. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: 2+p-SAT: relation of typical-case complexity to the nature of the phase transition. Random Struct. Algorithms 15(3–4), 414–435 (1999)

    Article  MathSciNet  Google Scholar 

  39. Mull, N., Fremont, D.J., Seshia, S.A.: On the hardness of SAT with community structure. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 141–159. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2_10

    Chapter  MATH  Google Scholar 

  40. Müller, T.: The critical probability for confetti percolation equals 1/2. Random Struct. Algorithms 50(4), 679–697 (2017)

    Article  MathSciNet  Google Scholar 

  41. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  42. Rathi, V., Aurell, E., Rasmussen, L., Skoglund, M.: Bounds on threshold of regular random k-SAT. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 264–277. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_22

    Chapter  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Rothenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Friedrich, T., Rothenberger, R. (2018). Sharpness of the Satisfiability Threshold for Non-uniform Random k-SAT. In: Beyersdorff, O., Wintersteiger, C. (eds) Theory and Applications of Satisfiability Testing – SAT 2018. SAT 2018. Lecture Notes in Computer Science(), vol 10929. Springer, Cham. https://doi.org/10.1007/978-3-319-94144-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94144-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94143-1

  • Online ISBN: 978-3-319-94144-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics