Skip to main content

The Dispatch Problems in Power Distribution Systems

  • Chapter
  • First Online:
Smart Operation for Power Distribution Systems

Abstract

Planning the dispatch of distribution systems involves a variety of decision-making problems relating to the service crews and several equipment operations. These problems include the maintenance and repair of a service, through the routing, scheduling and assignment of vehicles and service orders. Also, in addition to the traditional offline dispatch, several technological advances have led to a renewed interest in online dispatch problems. This increases the opportunities for more optimized dispatch, but also raises the complexity of the problem. With a glance toward the power grid, the electric power distribution systems are being hugely transformed toward smart power distribution systems, integrating old and new energy players. In these systems, new energy transactions will become possible, bringing challenging problems to the system operators, in order to balance supply-demand-storage with the coordination among several players, such as smart controllable loads, distributed storage systems, intermittent power generators, reconfigurable networks, communication networks, and so on. Clearly, facing those problems will require a solid mathematical foundation for the understanding and solving of the problems at hand. Therefore, in this chapter, our goal is to introduce the reader to the study of an interesting problem that one could expect to face in the operation of a smart distribution system: the dispatch problem. To this end, along this chapter, we analyze the anatomy of the dispatch problem and study two instances which may be faced in the operation of the power distribution systems: (1) the economic dispatch problem, which deals with the (economic) dispatching of power generators and (2) the service dispatch problem, which deals with the dispatching of working personnel for attending customer, maintenance and emergency orders in the distribution system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dantzig GB, Ramser JH (1959) The truck dispatching problem. Manag Sci 6:80–91. https://doi.org/10.1287/mnsc.6.1.80

    Article  MathSciNet  MATH  Google Scholar 

  2. Lamorgese L, Mannino C (2013) The track formulation for the train dispatching problem. Electron Notes Discrete Math 41:559–566

    Article  Google Scholar 

  3. Ruokokoski M, Sorsa J, Siikonen M-L, Ehtamo H (2016) Assignment formulation for the elevator dispatching problem with destination control and its performance analysis. Eur J Oper Res 252(2):397–406

    Article  Google Scholar 

  4. Jagtenberg CJ, van den Berg PL, van der Mei RD (2017) Benchmarking online dispatch algorithms for emergency medical services. Eur J Oper Res 258(2):715–725

    Article  MathSciNet  Google Scholar 

  5. Burkard RE, Çela E (1999) Linear assignment problems and extensions. Handbook of combinatorial optimization, supplement, vol A. Kluwer, Dordrecht, pp 75–149. https://doi.org/10.1007/978-1-4757-3023-4_2

    Book  MATH  Google Scholar 

  6. Toth P, Vigo D (2014) Vehicle routing: problems, methods, and applications. Vehicle routing. Second. [S.l.]: MOS-SIAM Series on Optimization.

    Google Scholar 

  7. Braekers K, Ramaekers K, Nieuwenhuyse IV (2016) The vehicle routing problem: state of the art classification and review. Comput Ind Eng 99:300–313. https://doi.org/10.1016/j.cie.2015.12.007

    Article  Google Scholar 

  8. Lawler EL, Lenstra JK, Kan AHGR, Shmoys DB (1993) Chapter 9. Sequencing and scheduling: algorithms and complexity. In: Logistics of production and inventory. [S.l.]: Handbooks in operations research and management science, supplement C. Elsevier, New York, pp 445–522. https://doi.org/10.1016/S0927-0507(05)80189-6

    Chapter  Google Scholar 

  9. Blazewicz J, Schmidt G, Shaw M (2007) Chapter 2. Basics. In: Logistics of production and inventory. [S.l.]. Handbook on scheduling: from theory to applications. Springer, Berlin/Heidelberg, pp 9–56

    Google Scholar 

  10. Blazewicz J, Schmidt G, Shaw M (2007) Chapter 3. Definition, analysis and classification of scheduling problems. In: Logistics of production and inventory. [S.l.]. Handbook on scheduling: from theory to applications. Springer, Berlin/Heidelberg, pp 9–56

    Google Scholar 

  11. Spliet R, Desaulniers G (2015) The discrete time window assignment vehicle routing problem. Eur J Oper Res 244(2):379–391. https://doi.org/10.1016/j.ejor.2015.01.020

    Article  MathSciNet  MATH  Google Scholar 

  12. Boonsam P, Suthikarnnarunai N, Chitphaiboon W (2011) Assignment problem and vehicle routing problem for an improvement of cash distribution. Proc World Congr Eng Comput Sci 2:1160–1164

    Google Scholar 

  13. Chen H-K, Hsueh C-F, Chang M-S (2009) Production scheduling and vehicle routing with time windows for perishable food products. Comput Oper Res 36(7):2311–2319. https://doi.org/10.1016/j.cor.2008.09.010

    Article  MathSciNet  MATH  Google Scholar 

  14. Ullrich CA (2013) Integrated machine scheduling and vehicle routing with time windows. Eur J Oper Res 227(1):152–165. https://doi.org/10.1016/j.ejor.2012.11.049

    Article  MathSciNet  MATH  Google Scholar 

  15. Desrosiers J, Dumas Y, Solomon MM, Soumis F (1995) Network routing. Handbook in operations research and management science. Chapter time constrained routing and scheduling, 8:35–139. North-Holland, doi:https://doi.org/10.1016/S0927-0507(05)80106-9

    Chapter  MATH  Google Scholar 

  16. Chen Z-L, Pundoor G (2006) Order assignment and scheduling in a supply chain. Oper Res 54:555–572. https://doi.org/10.1287/opre.1060.0280

    Article  MathSciNet  MATH  Google Scholar 

  17. Mosheiov G, Oron D (2006) Due-date assignment and maintenance activity scheduling problem. Math Comput Model 44:1053–1057. https://doi.org/10.1016/j.mcm.2006.03.008

    Article  MathSciNet  MATH  Google Scholar 

  18. Hervert-Escobar L, López-Ramos F, Esquivel-Flores OA (2016) Integrated approach to assignment, scheduling and routing problems in a sales territory business plan. Procedia Comput Sci 80:1887–1896, International Conference on Computational Science 2016, ICCS 2016, 6–8, San Diego, CA. https://doi.org/10.1016/j.procs.2016.05.487

    Article  Google Scholar 

  19. Happ HH (1977) Optimal power dispatch – a comprehensive survey. IEEE Trans Power Apparatus Syst PAS-96(3):841–854

    Article  Google Scholar 

  20. Chowdhury BH, Rahman S A review of recent advances in economic dispatch. IEEE Trans Power Syst 5(4):1248–1259

    Article  MathSciNet  Google Scholar 

  21. Ipakchi A, Albuyeh F (2009) Grid of the future. Power Energy Mag 7:52–62

    Article  Google Scholar 

  22. Cheung K, Wang X, Chiu B-C, Xiao Y, Rios-Zalapa R (2010) Generation dispatch in a smart grid environment. Innovative Smart Grid Technologies (ISGT), Gaithersburg, MD, pp 1–6

    Google Scholar 

  23. Basu M (2011) Economic environmental dispatch using multi-objective differential evolution. Appl Soft Comput 2(11):2845–2853

    Article  Google Scholar 

  24. Varaiya PP, Wu FF, Bialek JW (2011) Smart operation of smart grid: risk-limiting dispatch. Proc IEEE 99(1):40–57. https://doi.org/10.1109/JPROC.2010.2080250

    Article  Google Scholar 

  25. Li Q, Gao DW, Zhang H, Wu Z, Wang F-Y (2017) Consensus-based distributed economic dispatch control method in power systems. IEEE Trans Smart Grid PP(99):1. https://doi.org/10.1109/TSG.2017.2756041

    Article  Google Scholar 

  26. Liang Y, Liu F, Mei S (2017) Distributed real-time economic dispatch in smart grids: a state-based potential game approach. IEEE Trans Smart Grid PP(99):1. https://doi.org/10.1109/TSG.2017.2652919

    Article  Google Scholar 

  27. Ng SKK, Zhong J (2012) Smart dispatch of controllable loads with high penetration of renewables, PES T&D 2012, Orlando, FL, pp. 1–6, doi: https://doi.org/10.1109/TDC.2012.6281412

  28. Xia X, Elaiw AM (2010) Optimal dynamic economic dispatch of generation: a review. Electr Power Syst Res 80(8):975–986. https://doi.org/10.1016/j.epsr.2009.12.012

    Article  Google Scholar 

  29. Reddy SS, Bijwe PR, Abhyankar AR (2015) Real-time economic dispatch considering renewable power generation variability and uncertainty over scheduling period. IEEE Syst J 9(4):1440–1451. https://doi.org/10.1109/JSYST.2014.2325967

    Article  Google Scholar 

  30. Zhang Y, Rahbari-Asr N, Chow M-Y (2016) A robust distributed system incremental cost estimation algorithm for smart grid economic dispatch with communications information losses. J Netw Comput Appl 59:315–324. https://doi.org/10.1016/j.jnca.2015.05.014

    Article  Google Scholar 

  31. Kar S, Hug G (2012) Distributed robust economic dispatch in power systems: A consensus + innovations approach. 2012 I.E. Power and Energy Society General Meeting, San Diego, CA, pp. 1–8. doi:https://doi.org/10.1109/PESGM.2012.6345156

  32. Li N, Marden JR (2013) Designing games for distributed optimization. IEEE J Sel Top Signal Process 7(2):230–242. https://doi.org/10.1109/JSTSP.2013.2246511

    Article  Google Scholar 

  33. Schäfer A, Moser A (2012) Dispatch optimization and economic evaluation of distributed generation in a virtual power plant, 2012 I.E. Energytech, Cleveland, OH, pp. 1–6. doi: https://doi.org/10.1109/EnergyTech.2012.6304655

  34. Li P, Liu Y, Xin H, Jiang X (2017) A robust distributed economic dispatch strategy of virtual power plant under cyber-attacks. IEEE Trans Ind Inf PP(99):1. https://doi.org/10.1109/TII.2017.2788868

    Article  Google Scholar 

  35. Graham RL, Lawler EL, Lenstra JK, Kan AHGR (1979) Optimization and approximation in deterministic sequencing and scheduling: a survey. In: Hammer PL, Johnson EL, Korte BH (eds) Discrete optimization II. [S.l.]: Annals of discrete mathematics, supplement C. Elsevier, New York, pp 287–326. https://doi.org/10.1016/S0167-5060(08)70356-X

    Chapter  Google Scholar 

  36. Perrier N et al (2013) A survey of models and algorithms for emergency response logistics in electric distribution systems. Part II: contingency planning level. Comput Oper Res 40(7):1907–1922. https://doi.org/10.1016/j.cor.2012.09.009

    Article  MATH  Google Scholar 

  37. Guha S, Moss A, Naor JS, Schieber B (1999) Efficient recovery from power outage. In: Conference proceedings of the annual ACM symposium on theory of computing. Atlanta. New York, NY: GA: ACM; pp. 574–578. doi:https://doi.org/10.1145/301250.301406

  38. Yao MJ, Min KJ (1998) Repair-unit location models for power failures. IEEE Trans Eng Manag 45:57–65. https://doi.org/10.1109/17.658661

    Article  Google Scholar 

  39. Gillett BE, Miller LR (1974) A heuristic algorithm for the vehicle-dispatch problem. Oper Res 21:340–349. https://doi.org/10.1287/opre.22.2.340

    Article  MATH  Google Scholar 

  40. Raff S (1983) Routing and scheduling of vehicles and crews: the state of the art. Comput Oper Res 10(2):63–212. https://doi.org/10.1016/0305-0548(83)90030-8

    Article  MathSciNet  Google Scholar 

  41. Miller CE, Tucker AW, Zemlin RA (1960) Integer programming formulations and travelling salesman problems. J Ass Comp Mach 7:326–329. https://doi.org/10.1145/321043.321046

    Article  MATH  Google Scholar 

  42. Bektas T, Gouveia L (2014) Requiem for the Miller–Tucker–Zemlin subtour elimination constraints? Eur J Oper Res 236(3):820–832. https://doi.org/10.1016/j.ejor.2013.07.038

    Article  MathSciNet  MATH  Google Scholar 

  43. Blazewicz J, Schmidt G, Shaw M (2007) Chapter 7. Scheduling in hard real-time systems. In: Logistics of production and inventory. Handbook on scheduling: from theory to applications. Springer, Berlin/Heidelberg, pp 243–269

    Google Scholar 

  44. Zografos KG, Douligeris C, Tsoumpas P (1998) An integrated framework for managing emergency-response logistics: the case of the electric utility companies. IEEE Trans Eng Manag 45(2):115–126. https://doi.org/10.1109/17.669744

    Article  Google Scholar 

  45. Garcia VJ et al (2014) Reliability assessment by coordinating maintenance vehicles in electric power distribution systems. Procedia Soc Behav Sci 111:1045–1053. https://doi.org/10.1016/j.sbspro.2014.01.139

    Article  Google Scholar 

  46. Psaraftis HN, Wen M, Kontovas CA (2016) Dynamic vehicle routing problems: three decades and counting. Networks 67(1):3–31. https://doi.org/10.1002/net.21628

    Article  MathSciNet  Google Scholar 

  47. Ichoua S, Gendreau M, Potvin J-Y (2006) Exploiting knowledge about future demands for real-time vehicle dispatching. Transp Sci 40(2):211–225. https://doi.org/10.1287/trsc.1050.0114

    Article  Google Scholar 

  48. Larsen A, Madsen OBG, Solomon MM (2007) Chapter 2. Classification of dynamic vehicle routing systems. In: Zeimpekis V, Tarantilis CD, Giaglis GM, Minis I (eds) Dynamic fleet management, Operations Research/Computer Science Interfaces Series, vol 38. Springer, New York, pp 19–40. https://doi.org/10.1007/978-0-387-71722-7_2

    Chapter  Google Scholar 

  49. Pillac V, Gendreau M, Guéret C, Medaglia AL (2013) A review of dynamic vehicle routing problems. Eur J Oper Res 225:1–11. https://doi.org/10.1016/j.ejor.2012.08.015

    Article  MathSciNet  MATH  Google Scholar 

  50. Psaraftis HN (1988) Dynamic vehicle routing. In: Golden BL, Assad AA (eds) Vehicle routing: methods and studies. North-Holland, Amsterdam, pp 223–248. https://doi.org/10.1002/net.21628

    Chapter  Google Scholar 

  51. Bertsekas DP (2012) Dynamic programming and optimal control: approximate dynamic programming, vol II, 4th edn. Athena Scientific, Belmont, MA

    MATH  Google Scholar 

  52. Ichoua S, Gendreau M, Potvin J-Y (2007) Chapter 1. Planned route approaches for real-time vehicle routing. In: Zeimpekis V, Tarantilis CD, Giaglis GM, Minis I (eds) Dynamic fleet management: concepts, systems, algorithms and case studies, Operations Research/Computer Science Interfaces Series, vol 38. Springer, New York, pp 1–18. https://doi.org/10.1007/978-0-387-71722-7_1

    Chapter  Google Scholar 

  53. Larsen A (2001) The dynamic vehicle routing problem, PhD thesis, Technical University of Denmark (DTU)

    Google Scholar 

  54. Larsen A, Madsen OBG, Solomon MM (2002) Partially dynamic vehicle routing models and algorithms. J Oper Res Soc 53(6):637–646. https://doi.org/10.1057/palgrave.jors.2601352

    Article  MATH  Google Scholar 

  55. Laporte G (2009) Fifty years of vehicle routing. Transp Sci 43(4):408–416. https://doi.org/10.1287/trsc.1090.0301

    Article  Google Scholar 

  56. Bertsimas D, Simchi-Levi D (1996) A new generation of vehicle routing research: robust algorithms, addressing uncertainty. Oper Res 44:286–304. https://doi.org/10.1287/opre.44.2.286

    Article  MATH  Google Scholar 

  57. Gendreau M, Laporte G, Séguin R (1996) Stochastic vehicle routing. Eur J Oper Res 88:3–12. https://doi.org/10.1016/0377-2217(95)00050-X

    Article  MATH  Google Scholar 

  58. Psaraftis HN (1980) A dynamic-programming solution to the single vehicle many-to-many immediate request dial-a-ride problem. Transp Sci 14:130–154. https://doi.org/10.1287/trsc.14.2.130

    Article  Google Scholar 

  59. Ichoua S, Gendreau M, Potvin J-Y (2003) Vehicle dispatching with time-dependent travel times. Eur J Oper Res 144(2):379–396. https://doi.org/10.1016/S0377-2217(02)00147-9

    Article  MATH  Google Scholar 

  60. Gendreau M, Guertin F, Potvin J-Y, Séguin E (2006) Neighborhood search heuristics for a dynamic vehicle dispatching problem with pick-ups and deliveries. Transport Res Part C: Emerg Technol 14:157–174. https://doi.org/10.1016/j.trc.2006.03.002

    Article  Google Scholar 

  61. Ferrucci F, Block S, Gendreau M (2013) A pro-active real- time control approach for dynamic vehicle routing problems dealing with the delivery of urgent goods. Eur J Oper Res 225:130–141. https://doi.org/10.1016/j.ejor.2012.09.016

    Article  Google Scholar 

  62. Goodson JC, Jeffrey WO, Thomas BW (2013) Rollout policies for dynamic solutions to the multivehicle routing problem with stochastic demand and duration limits. Oper Res 61:138–154. https://doi.org/10.1287/opre.1120.1127

    Article  MathSciNet  MATH  Google Scholar 

  63. Thomas BW, White CCI (2004) Anticipatory route selection. Transp Sci 38:473–487. https://doi.org/10.1287/trsc.1030.0071

    Article  Google Scholar 

  64. Jaillet P, Wagner MR (2008) Generalized online routing: new competitive ratios, resource augmentation, and asymptotic analyses. Oper Res 56(3):745–757. https://doi.org/10.1287/opre.1070.0450

    Article  MathSciNet  MATH  Google Scholar 

  65. Arab A, Khodaei A, Khator SK, Han Z (2016) Electric power grid restoration considering disaster economics. IEEE Access 4:639–649. https://doi.org/10.1109/ACCESS.2016.2523545

    Article  Google Scholar 

  66. Nurre SG et al (2012) Restoring infrastructure systems: an integrated network design and scheduling (INDS) problem. Eur J Oper Res 223(3):794–806. https://doi.org/10.1016/j.ejor.2012.07.010

    Article  MathSciNet  MATH  Google Scholar 

  67. Hentenryck PV, Coffrin C, Bent R (2011) Vehicle Routing for the Last Mile of Power System Restoration. 17th Power Systems Computation Conference, v. 836

    Google Scholar 

  68. Simon B, Coffrin C, Hentenryck PV (2012) Chapter 25. Randomized adaptive vehicle decomposition for large-scale power restoration, computer science. In: Integration of AI and OR techniques in contraint programming for combinatorial optimzation problems. Springer, Berlin/Heidelberg, pp 379–394. https://doi.org/10.1007/978-3-642-29828-8_25

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schmitz, M., Barriquello, C.H., Garcia, V.J. (2018). The Dispatch Problems in Power Distribution Systems. In: Bernardon, D., Garcia, V. (eds) Smart Operation for Power Distribution Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-93922-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93922-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93921-6

  • Online ISBN: 978-3-319-93922-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics