Skip to main content

Binary Solutions to Some Systems of Linear Equations

  • Conference paper
  • First Online:
Optimization Problems and Their Applications (OPTA 2018)

Abstract

A point is called binary if its coordinates are equal to either zero or one. It is well known that it is hard to find a binary solution to the system of linear equations whose coefficients are integers with small absolute values. The aim of the article is to propose an effective probabilistic reduction from the system to the unique equation when there is a small difference between the number of binary solutions to the first equation and the number of binary solutions to the system. There exist nontrivial examples of linear equations with small positive coefficients having a small number of binary solutions in high dimensions.

This research has been supported by the Russian Science Foundation, Project No. 14–50–00150.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1986)

    MATH  Google Scholar 

  2. Dantzig, G.B.: Discrete-variable extremum problems. Oper. Res. 5(2), 266–277 (1957)

    Article  MathSciNet  Google Scholar 

  3. Smolev, V.V.: On an approach to the solution of a Boolean linear equation with positive integer coefficients. Discrete Math. Appl. 3(5), 523–530 (1993). https://doi.org/10.1515/dma.1993.3.5.523

    Article  MathSciNet  MATH  Google Scholar 

  4. Tamir, A.: New pseudopolynomial complexity bounds for the bounded and other integer Knapsack related problems. Oper. Res. Lett. 37(5), 303–306 (2009). https://doi.org/10.1016/j.orl.2009.05.003

    Article  MathSciNet  MATH  Google Scholar 

  5. Koiliaris, K., Xu, C.: A faster pseudopolynomial time algorithm for subset sum. In: SODA 2017 Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1062–1072. Society for Industrial and Applied Mathematics, Philadelphia (2017)

    Google Scholar 

  6. Bringmann, K.: A near-linear pseudopolynomial time algorithm for subset sum. In: SODA 2017 Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1073–1084. Society for Industrial and Applied Mathematics, Philadelphia (2017)

    Google Scholar 

  7. Margulies, S., Onn, S., Pasechnik, D.V.: On the complexity of Hilbert refutations for partition. J. Symbolic Comput. 66, 70–83 (2015). https://doi.org/10.1016/j.jsc.2013.06.005

    Article  MathSciNet  MATH  Google Scholar 

  8. Chistov, A.L.: An improvement of the complexity bound for solving systems of polynomial equations. J. Math. Sci. 181(6), 921–924 (2012). https://doi.org/10.1007/s10958-012-0724-4

    Article  MathSciNet  MATH  Google Scholar 

  9. Jeronimo, G., Sabia, J.: Sparse resultants and straight-line programs. J. Symbolic Comput. 87, 14–27 (2018). https://doi.org/10.1016/j.jsc.2017.05.005

    Article  MathSciNet  MATH  Google Scholar 

  10. Latkin, I.V., Seliverstov, A.V.: Computational complexity of fragments of the theory of complex numbers. Bull. Karaganda Univ. Math. 1, 47–55 (2015). (In Russian). http://vestnik.ksu.kz

  11. Seliverstov, A.V.: On tangent lines to affine hypersurfaces. Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki 27(2), 248–256 (2017). (In Russian). https://doi.org/10.20537/vm170208

    Article  MathSciNet  Google Scholar 

  12. Kolokolov, A.A., Zaozerskaya, L.A.: Finding and analysis of estimation of the number of iterations in integer programming algorithms using the regular partitioning method. Russian Math. (Iz. VUZ) 58(1), 35–46 (2014). https://doi.org/10.3103/S1066369X14010046

  13. Håstad, J., Rossman, B., Servedio, R.A., Tan, L.-Y.: An average-case depth hierarchy theorem for Boolean circuits. J. ACM 64(5), 35 (2017). https://doi.org/10.1145/3095799

    Article  MathSciNet  Google Scholar 

  14. Horowitz, E., Sahni, S.: Computing partitions with applications to the knapsack problem. J. ACM 21(2), 277–292 (1974). https://doi.org/10.1145/321812.321823

    Article  MathSciNet  Google Scholar 

  15. Bansal, N., Garg, S., Nederlof, J., Vyas, N.: Faster space-efficient algorithms for subset sum and k-sum. In: STOC 2017 Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 198–209 ACM, New York (2017). https://doi.org/10.1145/3055399.3055467

  16. Lokshtanov, D., Nederlof, J.: Saving space by algebraization. In: STOC 2010 Proceedings of the Forty-second ACM Symposium on Theory of Computing, pp. 321–330. ACM, New York (2010). https://doi.org/10.1145/1806689.1806735

  17. Gál, A., Jang, J.-T., Limaye, N., Mahajan, M., Sreenivasaiah, K.: Space-efficient approximations for Subset Sum. ACM Trans. Comput. Theory 8(4), 16 (2016). https://doi.org/10.1145/2894843

    Article  MathSciNet  Google Scholar 

  18. Williamson, J.: Determinants whose elements are 0 and 1. Am. Math. Monthly 53(8), 427–434 (1946)

    Article  MathSciNet  Google Scholar 

  19. Alon, N., Vũ, V.H.: Anti-Hadamard matrices, coin weighing, threshold gates and indecomposable hypergraphs. J. Comb. Theory A 79(1), 133–160 (1997). https://doi.org/10.1006/jcta.1997.2780

    Article  MathSciNet  Google Scholar 

  20. Babai, L., Hansen, K.A., Podolskii, V.V., Sun, X.: Weights of exact threshold functions. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp. 66–77. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-2_8

    Chapter  MATH  Google Scholar 

  21. Gorbunov, K.Yu., Seliverstov, A.V., Lyubetsky, V.A.: Geometric relationship between parallel hyperplanes, quadrics, and vertices of a hypercube. Probl. Inform. Transm. 48(2), 185–192 (2012). https://doi.org/10.1134/S0032946012020081

    Article  MathSciNet  Google Scholar 

  22. Williams, R.: New algorithms and lower bounds for circuits with linear threshold gates. In: STOC 2014 Proceedings of the Forty-sixth Annual ACM Symposium on Theory of Computing, pp. 194–202. ACM, New York (2014). https://doi.org/10.1145/2591796.2591858

  23. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identities. J. ACM 27(4), 701–717 (1980). https://doi.org/10.1145/322217.322225

    Article  MathSciNet  Google Scholar 

  24. Bacher, A., Bodini, O., Hwang, H.-K., Tsai, T.-H.: Generating random permutations by coin-tossing: classical algorithms, new analysis, and modern implementation. ACM Trans. Algorithms 13(2), 24 (2017). https://doi.org/10.1145/3009909

  25. Beresnev, V.L., Melnikov, A.A.: An upper bound for the competitive location and capacity choice problem with multiple demand scenarios. J. Appl. Ind. Math. 11(4), 472–480 (2017). https://doi.org/10.1134/S1990478917040020

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the anonymous reviewers for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr V. Seliverstov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Seliverstov, A.V. (2018). Binary Solutions to Some Systems of Linear Equations. In: Eremeev, A., Khachay, M., Kochetov, Y., Pardalos, P. (eds) Optimization Problems and Their Applications. OPTA 2018. Communications in Computer and Information Science, vol 871. Springer, Cham. https://doi.org/10.1007/978-3-319-93800-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93800-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93799-1

  • Online ISBN: 978-3-319-93800-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics