Skip to main content

Quantitative Image Analysis in Tomography

  • Reference work entry
  • First Online:
Handbook of Particle Detection and Imaging
  • 3022 Accesses

Abstract

In tomography, quantitative image analysis – or quantitation in short – is the extraction of parameters from an image or a set of images, as opposed to visual analysis. Quantitation is expected to provide objective, accurate, precise, reproducible, and efficient image interpretation, hence making the most of the signal delivered by the imaging device to the patient benefit. In this chapter, we explain the main steps required for quantitative image analysis, and give an overview of the class of methods appropriate for quantitation of static images, and also of dynamic image series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Abu Anas EM, Lee SY, Hasan MK (2010) Removal of ring artifacts in CT imaging through detection and correction of stripes in the sinogram. Phys Med Biol 55:6911–6930

    Article  Google Scholar 

  • Aldroubi A, Unser M (1996) Wavelets in medicine and biology. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Alessio A, Kinahan P, Lewellen T (2006) Modelling and incorporation of system response functions in 3-D whole body PET. IEEE Trans Med Imaging 25:828–837

    Article  Google Scholar 

  • Aristophanous M, Penney BC, Martel MK, Pelizzari CA (2007) A Gaussian mixture model for definition of lung tumor volumes in positron emission tomography. Med Phys 34:4223–4235

    Article  Google Scholar 

  • Beekman FJ, Kamphuis C, King MA, van Rijk PP, Viergever MA (2001) Improvement of image resolution and quantitative accuracy in clinical single photon emission computed tomography. Comput Med Imaging Graph 25:135–146

    Article  Google Scholar 

  • Belhassen S, Zaidi H (2010) A novel fuzzy C-means algorithm for unsupervised heterogeneous tumor quantification in PET. Med Phys 37:1309–1324

    Article  Google Scholar 

  • Benali H, Buvat I, Frouin F, Bazin JP, Di Paola R (1994) Foundations of factor analysis of medical image sequences: a unified approach and some practical implications. Image Vis Comput 12:375–385

    Article  Google Scholar 

  • Beucher S, Lantuéjoul C (1979) Use of watersheds in contour detection. In: International workshop on image processing, real-time edge and motion detection/estimation, Rennes, September 1979

    Google Scholar 

  • Beyer T, Czernin J, Freudenberg LS (2011) Variations in clinical PET/CT operations: results of an international survey of active PET/CT users. J Nucl Med 52:303–310

    Article  Google Scholar 

  • Birkfellner W (2010) Applied medical image processing: a basic course. Taylor & Francis, Boca Raton

    Google Scholar 

  • Boas FE, Fleischmann D (2011) Evaluation of two iterative techniques for reducing metal artifacts in computed tomography. Radiology. (in press)

    Google Scholar 

  • Boogers M, Van Kriekinge SD, Henneman MM, Ypenburg C, Van Bommel RJ, Boersma E, Dibbets-Schneider P, Stokkel MP, Schalij MJ, Berman DS, Germano G, Bax JJ (2009) Quantitative gated SPECT–derived phase analysis on gated myocardial perfusion SPECT detects left ventricular dyssynchrony and predicts response to cardiac resynchronization therapy. J Nucl Med 50:718–725

    Article  Google Scholar 

  • Buckler AJ, Boellaard R (2011) Standardization of quantitative imaging: the time is right, and 18F-FDG PET/CT is a good place to start. J Nucl Med 52:171–172

    Article  Google Scholar 

  • Chabriais J, Lebo NK, Helenon O, Chourroute Y, Di Paola R, Moreau JF (1991) Iodinated contrast renal pharmacokinetic study by factor analysis dynamic computed tomography in the rabbit. Investig Radiol 26:S80–S82

    Article  Google Scholar 

  • Chandler A, Wei W, Herron DH, Anderson EF, Johnson VE, Ng CS (2011) Semiautomated motion correction of tumors in lung CT-perfusion studies. Acad Radiol 18:286–293

    Article  Google Scholar 

  • Dawson P (1999) Functional and physiological imaging. Textbook of contrast media. Informa Healthcare, Oxford, pp 75–94

    Google Scholar 

  • Dowson N, Bourgeat P, Rose S, Daglish M, Smith J, Fay M, Coulthard A, Winter C, MacFarlane D, Thomas P, Crozier S, Salvado O (2010) Joint factor and kinetic analysis of dynamic FDOPA PET scans of brain cancer patients. Med Image Comput Comput Assist Interv 13:185–192

    Google Scholar 

  • El Naqa I, Grigsby PW, Aptea A, Kidd E, Donnelly E, Khullar D, Chaudhari S, Yang D, Schmitt M, Laforest R, Thorstad WL, Deasy JO (2009) Exploring feature-based approaches in PET images for predicting cancer treatment outcomes. Pattern Recogn 42:1162–1171

    Article  ADS  Google Scholar 

  • Frouin F, Cinotti L, Benali H, Buvat I, Bazin JP, Millet P, Di Paola R (1993) Extraction of functional volumes from medical dynamic volumetric data sets. Comput Med Imaging Graph 17:397–404

    Article  Google Scholar 

  • Frouin F, Merlet P, Bouchareb Y, Frouin V, Dubois-Rand JL, De Cesare A, Herment A, Syrota A, Todd-Pokropek A (2001) Validation of myocardial perfusion reserve measurements using regularized factor images of H(2)(15)O dynamic PET scans. J Nucl Med 42:1737–1746

    Google Scholar 

  • Frouin F, Delouche A, Abergel E, Raffoul H, Diebold H, Diebold B (2002) Value of factor analysis in a wall motion study: preliminary application in the detection of left ventricular segmental contraction ischemic disorders by echocardiography. J Radiol 83:1835–1841

    Google Scholar 

  • Ganeshan B, Abaleke S, Young RC, Chatwin CR, Miles KA (2010) Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 10:137–143

    Article  Google Scholar 

  • Ganeshan B, Burnand K, Young R, Chatwin C, Miles K (2011) Dynamic contrast-enhanced texture analysis of the liver: initial assessment in colorectal cancer. Investig Radiol 46:160–168

    Article  Google Scholar 

  • Geets X, Lee JA, Bol A, Lonneux M, Grégoire V (2007) A gradient-based method for segmenting FDG-PET images: methodology and validation. Eur J Nucl Med Mol Imaging 34:1427–1438

    Article  Google Scholar 

  • Green AJ, Francis RJ, Baig S, Begent RH (2008) Semiautomatic volume of interest drawing for (18)F-FDG image analysis-method and preliminary results. Eur J Nucl Med Mol Imaging 35:393–406

    Article  Google Scholar 

  • Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3:610–621

    Article  Google Scholar 

  • Hatt M, Lamare F, Boussion N, Turzo A, Collet C, Salzenstein F, Roux C, Jarritt P, Carson K, Cheze-Le Rest C, Visvikis D (2007) Fuzzy hidden Markov chains segmentation for volume determination and quantitation in PET. Phys Med Biol 52:3467–3491

    Article  Google Scholar 

  • Hutton B, Buvat I, Beekman F (2011) Review and current status of SPECT scatter correction. Phys Med Biol. (in press)

    Google Scholar 

  • Kakar M, Olsen DR (2009) Automatic segmentation and recognition of lungs and lesion from CT scans of thorax. Comput Med Imaging Graph 33:72–82

    Article  Google Scholar 

  • Kessler RM, Ellis JR, Eden M (1984) Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 8:514–522

    Article  Google Scholar 

  • Kim J, Herrero P, Sharp T, Laforest R, Rowland DJ, Tai YC, Lewis JS, Welch MJ (2006) Minimally invasive method of determining blood input function from PET images in rodents. J Nucl Med 47:330–336

    Google Scholar 

  • Kinahan PE, Hasegawa BH, Beyer T (2003) X-ray-based attenuation correction for positron emission tomography/computed tomography scanners. Semin Nucl Med 33:166–179

    Article  Google Scholar 

  • Klein R, Beanlands RS, Wassenaar RW, Thorn SL, Lamoureux M, DaSilva JN, Adler A, deKemp RA (2010) Kinetic model-based factor analysis of dynamic sequences for 82-rubidium cardiac positron emission tomography. Med Phys 37:3995–4010

    Article  Google Scholar 

  • Kolditz D, Meyer M, Kyriakou Y, Kalender WA (2011) Comparison of extended field-of-view reconstructions in C-arm flat-detector CT using patient size, shape or attenuation information. Phys Med Biol 56:39–56

    Article  Google Scholar 

  • Kyriakou Y, Meyer E, Prell D, Kachelriess M (2010) Empirical beam hardening correction (EBHC) for CT. Med Phys 37:5179–5187

    Article  Google Scholar 

  • Martel AL, Fraser D, Delay GS, Morgan PS, Moody AA (2003) Separating arterial and venous components from 3D dynamic contrast-enhanced MRI studies using factor analysis. Magn Reson Med 49:928–933

    Article  Google Scholar 

  • Montgomery DW, Amira A, Zaidi H (2007) Fully automated segmentation of oncological PET volumes using a combined multiscale and statistical model. Med Phys 34:722–736

    Article  Google Scholar 

  • Patton JA, Turkington TG (2008) SPECT/CT physical principles and attenuation correction. J Nucl Med Technol 36:1–10

    Article  Google Scholar 

  • Pohle R, Toennies KD (2001) Segmentation of medical images using adaptive region growing. Proc SPIE 4322:1337–1346

    Article  ADS  MATH  Google Scholar 

  • Ray S, Hagge R, Gillen M, Cerejo M, Shakeri S, Beckett L, Greasby T, Badawi RD (2008) Comparison of two-dimensional and three- dimensional iterative watershed segmentation methods in hepatic tumor volumetrics. Med Phys 35:5869–5881

    Article  Google Scholar 

  • Rojas-Ordus D, Jiménez-Angeles L, Hernández-Sandoval S, Valdes-Cristerna R (2010) Factor analysis of ventricular contraction using SPECT-ERNA images. Conf Proc IEEE Eng Med Biol Soc 5732–5735

    Google Scholar 

  • Sadi F, Lee SY, Hasan MK (2010) Removal of ring artifacts in computed tomographic imaging using iterative center weighted median filter. Comput Biol Med 40:109–118

    Article  Google Scholar 

  • Shih FY (2009) Image processing and mathematical morphology: fundamentals and applications. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Sitek A, Gullberg GT, Huesman RH (2002) Correction for ambiguous solutions in factor analysis using a penalized least squares objective. IEEE Trans Med Imaging 21:216–225

    Article  Google Scholar 

  • Soret M, Koulibaly PM, Darcourt J, Buvat I (2006) Partial volume effect correction in SPECT for striatal uptake measurements in patients with neurodegenerative diseases: impact upon patient classification. Eur J Nucl Med Mol Imaging 33:1062–1072

    Article  Google Scholar 

  • Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48:932–945

    Article  Google Scholar 

  • Stute S, Benoit D, Martineau A, Rehfeld NS, Buvat I (2011) A method for accurate modelling of the crystal response function at a crystal sub-level applied to PET reconstruction. Phys Med Biol 56:793–809

    Article  Google Scholar 

  • Sureau FC, Reader AJ, Comtat C, Leroy C, Ribeiro MJ, Buvat I, Trébossen R (2008) Impact of image-space resolution modeling for studies with the high-resolution research tomograph. J Nucl Med 49:1000–1008

    Google Scholar 

  • Tixier F, Le Rest CC, Hatt M, Albarghach N, Pradier O, Metges JP, Corcos L, Visvikis D (2011) Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer. J Nucl Med 52:369–378

    Article  Google Scholar 

  • Truc PT, Kim TS, Lee S, Lee YK (2010) A study on the feasibility of active contours on automatic CT bone segmentation. J Digit Imaging 23:793–805

    Article  Google Scholar 

  • Visser EP, Boerman OC, Oyen WJ (2010) SUV: from silly useless value to smart uptake value. J Nucl Med 51:173–175

    Google Scholar 

  • Zaidi H, El Naqa I (2010) PET-guided delineation of radiation therapy treatment volumes: a survey of image segmentation techniques. Eur J Nucl Med Mol Imaging 37:2165–2187

    Article  Google Scholar 

Further Reading

  • Dougherty G (2009) Digital image processing for medical applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wolfgang B (2010) Applied medical image processing: a basic course. Taylor & Francis, Boca Raton

    Google Scholar 

  • Zaidi H (ed) (2010) Quantitative analysis in nuclear medicine imaging. Springer

    Google Scholar 

Examples of Free Software for Quantitative Imaging

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irène Buvat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Buvat, I. (2021). Quantitative Image Analysis in Tomography. In: Fleck, I., Titov, M., Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-93785-4_41

Download citation

Publish with us

Policies and ethics