Skip to main content

Muon Spectrometers

  • Reference work entry
  • First Online:
Handbook of Particle Detection and Imaging
  • 2958 Accesses

Abstract

The detection of muons and the measurement of their momenta is an important task both in astroparticle physics and in elementary particle physics. In cosmic ray physics, the need for muon detectors is obvious since atmospheric showers consist mainly of muons when reaching the surface of the earth. In accelerator-based experiments, the muon plays a special role as a long-lived particle with only electromagnetic interactions; it can easily be identified, and muons provide in many theoretical models a characteristic signature for new physics. A muon spectrometer consists of a position-sensitive detector that records tracks of charged particles, and a magnetic field so that charge and momentum can be deduced from the track curvature. The identification of muons often relies on the large amount of absorber material in front of the muon detector, which allows only muons (and neutrinos) to pass. We first describe the general detector layout and discuss the related uncertainties. Then we present several examples of muon spectrometers that were or are successfully operated in accelerator physics or in cosmic ray physics. We include also muon detectors without a magnetic field. Finally, we report on the application of muon detectors outside particle and astroparticle physics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Alfaro R et al (2008) Searching for possible hidden chambers in the pyramid of the sun. Proceedings of the 30th international cosmic ray conference, Mexico City

    Google Scholar 

  • ALICE Coll (2008) The ALICE experiement at the CERN LHC. J Instrum 3:S08001

    Google Scholar 

  • Alvarez L et al (1970) Search for hidden chambers in the pyramids. Science 167:832

    Article  ADS  Google Scholar 

  • ANTARES Coll (2010) Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope. Astropart Phys 33:86

    Article  ADS  Google Scholar 

  • Anulli F et al (2002) The BaBar instrumented flux return performance: lessons learned. Nucl Instrum Methods A 494:455

    Article  ADS  Google Scholar 

  • Anulli F et al (2003) Mechanisms affecting performance of the BaBar resistive plate chambers and searches for remediation. Nucl Inst Methods A508:128

    Article  ADS  Google Scholar 

  • Anulli F et al (2005) Performance of second generation BaBar flux resistive plate chamber. Nucl Instrum Methods A 552:276

    Article  ADS  Google Scholar 

  • ARGO-YBJ Coll, Wang Y et al (2008) Preliminary results of the Moon shadow using ARGO-YBJ detector. Nucl Phys Proc Suppl 175:551

    ADS  Google Scholar 

  • ATLAS Coll (2008) The ATLAS Experiment at the CERN LHC. J Instrum 3:S08003

    Google Scholar 

  • Auger P et al (1939) Extensive cosmic-ray showers. Rev Mod Phys 11:288

    Article  ADS  Google Scholar 

  • BaBar Coll (2002) The BaBar detector. Nucl Inst Methods A479:1

    ADS  Google Scholar 

  • BELLE Coll (2002) The Belle detector. Nucl Inst Methods A479:117–232

    Google Scholar 

  • Benettoni M et al (2007) Muon radiography with the CMS muon barrel chambers. Proceedings of the 2007 IEEE nuclear science symposium, Honolulu, Hawaii

    Google Scholar 

  • Blum W, Riegler W, Rolandi L (2008) Particle detection with drift chambers. Springer, Berlin

    Google Scholar 

  • Boersma DJ et al for the Icecube Collaboration (2009) Moon shadow observation by ice-cube. Proceedings of the 31st international cosmic ray conference, Lodz, Poland

    Google Scholar 

  • CDF Coll (1996) The CDF II technical design report. Fermilab-Pub-96-390-E, November 1996

    Google Scholar 

  • CMS Coll (2008) The CMS experiment at the CERN LHC. J Instrum 3:S08004

    Google Scholar 

  • CMS Coll (2010) Measurement of the charge asymmetry of atmospheric muons with the CMS detector. Physics Analysis Summary CMS-PAS-MUO-10-001

    Google Scholar 

  • D0 Coll (2006) The upgraded D0 detector. Nucl Inst Methods A565:463–537

    ADS  Google Scholar 

  • D0 Coll, Baldin B et al (1997) Technical design of the central muon system. D0 Note 3365, 29 March 1997

    Google Scholar 

  • Distefano C for the Antqres Coll (2009) Detection of the moon shadow with the ANTARES neutrino telescope. International workshop on very large volume neutrinotelescopes, Athens, Greece

    Google Scholar 

  • Gluckstern RL (1963) Uncertainties in track momentum and direction due to multiple scattering and measurement errors. Nucl Inst Methods 24:381

    Article  ADS  Google Scholar 

  • Grupen C, Shwartz B (2008) Particle detectors. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  • Grupen C et al (2008) Cosmic ray results from the CosmoALEPH experiment. Nucl Phys B 175–176:286

    Article  Google Scholar 

  • Haino S et al (2004) Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer. Phys Lett B 594:35

    Article  ADS  Google Scholar 

  • IceCube Coll (2006) First year performance of the IceCube neutrino telescope. Astropart Phys 26:155

    Article  ADS  Google Scholar 

  • KASCADE Coll (2003) The cosmic-ray experiment KASCADE. Nucl Instrum Methods A 513:490

    Article  ADS  Google Scholar 

  • L3 Coll (2002) The L3 + C detector, a unique tool-set to study cosmic rays. Nucl Instrum Methods A 488:209

    Article  ADS  Google Scholar 

  • L3 Coll, Achard P et al (2005) Measurement of the shadowing of high-energy cosmic rays by the Moon: a search for TeV-energy antiprotons. Astropart Phys 23:411

    Article  ADS  Google Scholar 

  • LHCb Coll (2008) The LHCb detector at the LHC. J Instrum 3:S08005

    Google Scholar 

  • Macedonio G, Martini M (2009) Motivations for muon radiography of active volcanoes. Earth Planets Space 61:1 and references therein

    Google Scholar 

  • MACRO Coll (1995) Vertical muon intensity measured with MACRO at the Gran Sasso Laboratory. Phys Rev D 52:3793

    Article  ADS  Google Scholar 

  • MACRO Coll (2002) The MACRO detector at Gran Sasso. Nucl Instrum Methods A 486:663

    Article  ADS  Google Scholar 

  • MINOS Coll (2009) Measurement of the atmospheric muon charge ratio at TeV energies with the MINOS detector. Phys Rev D 76:052003

    Google Scholar 

  • OPERA Collaboration (2010) Measurement of the atmospheric muon charge ratio with the OPERA detector. High Energy Physics - Experiment. https://arxiv.org/abs/1003.1907

  • Particle Data Group, Amsler C et al (2008) Review of particle physics. Phys Lett B 667:1, and references therein

    Google Scholar 

  • Pesente S et al (2009) First results on material identification and imaging with a large-volume muon tomography prototype. Nucl Instrum Methods A 604:738

    Article  ADS  Google Scholar 

  • Pierre Auger Coll (2004) Properties and performance of the prototype instrument for the Pierre Auger Observatory. Nucl Instrum Methods Phys Res A 523:50

    Article  ADS  Google Scholar 

  • Spieler H (2005) Semiconductor systems. Oxford University Press, New York

    Book  Google Scholar 

  • Szeptycka M, Szymanski P (2009) Remarks on myon radiography. In: Begun V, Jenkovszky LL, Polanski A (eds) Progress in high energy physics and nuclear safety. Springer, Dordrecht, pp 353–362

    Chapter  Google Scholar 

  • Travnicek P, Ridky J (2003) Cosmic multi-muon bundles measured at DELPHI. Nucl Phys B 122:285

    Article  Google Scholar 

  • Tsuji S et al (1998) Measurements of muon at sea level. J Phys G Nucl Part Phys 24:1805

    Article  ADS  Google Scholar 

  • Tsuji S et al (2001) Atmospheric muon measurements II: zenith angular dependence. In: Proceedings of the 27th international cosmic ray conference, Hamburg, Germany

    Google Scholar 

  • Yamashita Y et al (1996) An altazimuthal counter telescope with a magnet spectrometer tracing Cygnus X-3. Nucl Instrum Methods A 374:245

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hebbeker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Hebbeker, T., Hoepfner, K. (2021). Muon Spectrometers. In: Fleck, I., Titov, M., Grupen, C., Buvat, I. (eds) Handbook of Particle Detection and Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-93785-4_19

Download citation

Publish with us

Policies and ethics