Skip to main content

Paddy Soil Microbial Diversity and Enzymatic Activity in Relation to Pollution

  • Chapter
  • First Online:
Environmental Pollution of Paddy Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 53))

Abstract

Chemical and microbial characterizations of a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil are used to investigate whether the distribution of heavy metals (Cd, Cu, Pb, and Zn) regulates microbial community activity, abundance, and diversity at the microenvironment scale. The soils are physically fractionated into coarse-sand, fine-sand, silt, and clay fractions. Long-term heavy metal pollution notably decreases soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon across the fractions, respectively. The coarse-sand fraction is more affected by pollution than the clay fraction and displayed a significantly lower respiration and dehydrogenase activity. The abundances and diversities of bacteria were less affected under pollution. Long-term heavy metal pollution decreased the microbial biomass, activity, and diversity in long-term exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baath E, Díaz-Raviña M, Frostegård Å, Campbell CD (1998) Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64(1):238–245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528(7582):364–369

    Article  CAS  Google Scholar 

  • Bowles TM, Acosta-Martínez V, Calderón F, Jackson LE (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agro ecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem 68:252–262

    Article  CAS  Google Scholar 

  • Cao ZH, Huang JF, Zhang CS, Li AF (2004) Soil quality evolution after land use change from paddy soil to vegetable land. Environ Geochem Health 26(2):97–103

    Article  Google Scholar 

  • Chao-Rong GE, Zhang QC (2011) Microbial community structure and enzyme activities in a sequence of copper-polluted soils. Pedosphere 21(2):164–169

    Article  Google Scholar 

  • Chen Y, Zuo R, Zhu Q, Sun Y, Li M, Dong Y, Ru Y, Zhang H, Zheng X, Zhang Z (2014) MoLys2 is necessary for growth, conidiogenesis, lysine biosynthesis, and pathogenicity in Magnaporthe oryzae. Fungal Genet Biol 67:51–57

    Article  CAS  Google Scholar 

  • Chodak M, Niklińska M (2010) Effect of texture and tree species on microbial properties of mine soils. Appl Soil Ecol 46(2):268–275

    Article  Google Scholar 

  • Do TX (2012) Microbial communities in paddy fields in the Mekong Delta of Vietnam, vol 2012, no. 101

    Google Scholar 

  • Geisseler D, Linquist BA, Lazicki PA (2017) Effect of fertilization on soil microorganisms in paddy rice systems–A meta-analysis. Soil Biol Biochem 15:452–460

    Article  Google Scholar 

  • Gregorich EG, Monreal CM, Carter MR, Angers DA, Ellert B (1994) Towards a minimum data set to assess soil organic matter quality in agricultural soils. Can J Soil Sci 74(4):367–385

    Article  CAS  Google Scholar 

  • Griffiths RI, Thomson BC, James P, Bell T, Bailey M, Whiteley AS (2011) The bacterial biogeography of British soils. Environ Microbiol 13(6):1642–1654

    Article  Google Scholar 

  • Hu XF, Jiang Y, Shu Y, Hu X, Liu L, Luo F (2014) Effects of mining wastewater discharges on heavy metal pollution and soil enzyme activity of the paddy fields. J Geochem Explor 147:139–150

    Article  CAS  Google Scholar 

  • Huaidong HE, Waichin LI, Riqing YU, Zhihong YE (2017) Illumine-based analysis of bulk and rhizosphere soil bacterial communities in paddy fields under mixed heavy metal contamination. Pedosphere 27(3):569–578

    Article  Google Scholar 

  • Jin-Hua W, Hui D, Yi-Tong L, Guo-Qing S (2009) Combined effects of cadmium and butachlor on microbial activities and community DNA in a paddy soil. Pedosphere 19(5):623–630

    Article  Google Scholar 

  • Keogel-Knabner I, Amelung W, Cao Z, Fiedler S, Frenzel P, Jahn R, Kalbitz K, Keolbl A, Schloter M (2010) Biogeochemistry of paddy soils. Geoderma 157:1–14

    Article  Google Scholar 

  • Li YT, Rouland C, Benedetti M, Li FB, Pando A, Lavelle P, Dai J (2009) Microbial biomass, enzyme and mineralization activity in relation to soil organic C, N and P turnover influenced by acid metal stress. Soil Biol Biochem 41(5):969–977

    Article  CAS  Google Scholar 

  • Li Y-J, Chen X, Shamsi I, Fang P, Lin X-Y (2012) Effects of irrigation patterns and nitrogen fertilization on rice yield and microbial community structure in paddy soil. Pedosphere 22(5):661–672

    Article  CAS  Google Scholar 

  • Li Y, Zhang W, Zheng D, Zhou Z, Yu W, Zhang L, Feng L, Liang X, Guan W, Zhou J, Chen J, Lin Z (2014) Genomic evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation. Genom Biol Evol 6(9):2516–2526

    Article  CAS  Google Scholar 

  • Li X, Sun J, Wang H, Li X, Wang J, Zhang H (2017) Changes in the soil microbial phospholipid fatty acid profile with depth in three soil types of paddy fields in China. Geoderma 290:69–74

    Article  CAS  Google Scholar 

  • Lin H, Sun W, Zhang Z, Chapman SJ, Freitag TE, Fu J, Ma J (2016) Effects of manure and mineral fertilization strategies on soil antibiotic resistance gene levels and microbial community in a paddy–upland rotation system. Environ Pollut 211:332–337

    Article  CAS  Google Scholar 

  • Lopes AR, Faria C, Prieto-Fernández Á, Trasar-Cepeda C, Manaia CM, Nunes OC (2011) Comparative study of the microbial diversity of bulk paddy soil of two rice fields subjected to organic and conventional farming. Soil Biol Biochem 43(1):115–125

    Article  CAS  Google Scholar 

  • Lu L, Roberts G, Simon K, Yu J, Hudson AP (2003) A protein required for respiratory growth of Saccharomyces cerevisiae. Curr Genet 43(4):263–272

    Article  CAS  Google Scholar 

  • Luo X, Fu X, Yang Y, Cai P, Peng S, Chen W, Huang Q (2016) Microbial communities play important roles in modulating paddy soil fertility. Sci Rep 6

    Google Scholar 

  • Mao TT, Yin R, Deng H (2015) Effects of copper on methane emission, methanogens and methanotrophs in the rhizosphere and bulk soil of rice paddy. Catena 133:233–240

    Article  CAS  Google Scholar 

  • Meharg AA, Rahman MM (2003) Arsenic contamination of Bangladesh paddy field soils: implications for rice contribution to arsenic consumption. Environ Sci Technol 37(2):229–234

    Article  CAS  Google Scholar 

  • Min H, Ye YF, Chen ZY, Wu WX, Yufeng D (2001) Effects of butachlor on microbial populations and enzyme activities in paddy soil. J Environ Sci Health B 36(5):581–595

    Article  CAS  Google Scholar 

  • Moche M, Gutknecht J, Schulz E, Langer U, Rinklebe J (2015) Monthly dynamics of microbial community structure and their controlling factors in three floodplain soils. Soil Biol Biochem 90:169–178

    Article  CAS  Google Scholar 

  • Nishimura S, Yonemura S, Sawamoto T, Shirato Y, Akiyama H, Sudo S, Yagi K (2008) Effect of land use change from paddy rice cultivation to upland crop cultivation on soil carbon budget of a cropland in Japan. Agric Ecosyst Environ 125(1):9–20

    Article  Google Scholar 

  • Pennanen T, Frostegard ASA, Fritze H, Baath E (1996) Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl Environ Microbiol 62(2):420–428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Praeg N, Wagner AO, Illmer P (2014) Effects of fertilisation, temperature and water content on microbial properties and methane production and methane oxidation in subalpine soils. Eur J Soil Biol 65:96–106

    Article  CAS  Google Scholar 

  • Seklemova E, Pavlova A, Kovacheva K (2001) Biostimulation-based bioremediation of diesel fuel: field demonstration. Biodegradation 12(5):311–316

    Article  CAS  Google Scholar 

  • Shang H, Yang Q, Wei S, Wang J (2012) The effects of mercury and lead on microbial biomass of paddy soil from southwest of China. Procedia Environ Sci 12:468–473

    Article  CAS  Google Scholar 

  • Shibahara F, Inubushi K (1997) Effect of organic matter application on microbial biomass and available nutrients in various types of paddy soils. Soil Sci Plant Nutr 43:191–203

    Article  Google Scholar 

  • Steenwerth KL, Jackson LE, Calderón FJ, Stromberg MR, Scow KM (2002) Soil microbial community composition and land use history in cultivated and grassland ecosystems of coastal California. Soil Biol Biochem 34(11):1599–1611

    Article  CAS  Google Scholar 

  • Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kihou N, Yuita K (2004) Arsenic behavior in paddy fields during the cycle of flooded and non-flooded periods. Environ Sci Technol 38:1038–1044

    Article  CAS  Google Scholar 

  • Tang X, Hashmi MZ, Long D, Chen L, Khan MI, Shen C (2014) Influence of heavy metals and PCBs pollution on the enzyme activity and microbial community of paddy soils around an e-waste recycling workshop. Int J Environ Res Public Health 11(3):3118–3131

    Article  CAS  Google Scholar 

  • Wang N, Chang ZZ, Xue XM, Yu JG, Shi XX, Ma LQ, Li HB (2017a) Biochar decreases nitrogen oxide and enhances methane emissions via altering microbial community composition of anaerobic paddy soil. Sci Total Environ 581:689–696

    Article  Google Scholar 

  • Wang N, Xue XM, Juhasz AL, Chang ZZ, Li HB (2017b) Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Environ Pollut 220:514–522

    Article  CAS  Google Scholar 

  • Wu W, Dong C, Wu J, Liu X, Wu Y, Chen X, Yu S (2017) Ecological effects of soil properties and metal concentrations on the composition and diversity of microbial communities associated with land use patterns in an electronic waste recycling region. Sci Total Environ 601:57–65

    Article  Google Scholar 

  • Xiao XY, Wang MW, Zhu HW, Guo ZH, Han XQ, Zeng P (2017) Response of soil microbial activities and microbial community structure to vanadium stress. Ecotoxicol Environ Saf 142:200–206

    Article  CAS  Google Scholar 

  • Xinyu Z, Juan X, Fengting Y, Wenyi D, Xiaoqin D, Yang Y, Xiaomin S (2017) Specific responses of soil microbial residue carbon to ling term applications of mineral fertilizer to reddish paddy soils. Pedosphere. doi: https://doi.org/10.1016/S1002-0160(17)60335-7

    Article  Google Scholar 

  • Xu P, Chen F, Mannas JP, Feldman T, Sumner LW, Roossinck MJ (2008) Virus infection improves drought tolerance. New Phytol 180(4):911–921

    Article  Google Scholar 

  • Xu C, Peng C, Sun L, Zhang S, Huang H, Chen Y, Shi J (2015) Distinctive effects of TiO2 and CuO nanoparticles on soil microbes and their community structures in flooded paddy soil. Soil Biol Biochem 86:24–33

    Article  CAS  Google Scholar 

  • Yamaguchi N, Nakamura T, Dong D, Takahashi Y, Amachi S, Makino T (2011) Arsenic release from flooded paddy soils is influenced by speciation, Eh, pH, and iron dissolution. Chemosphere 83:925–932

    Article  CAS  Google Scholar 

  • Yang HQ, Hao YK (2011) Main restrictive factors and countermeasures of rice industry in China. Chin Agr Sci Bull 27:351–354

    Google Scholar 

  • Yang D, Zhang M (2014) Effects of land-use conversion from paddy field to orchard farm on soil microbial genetic diversity and community structure. Eur J Soil Biol 64:30–39

    Article  Google Scholar 

  • Yang J, Tang C, Wang F, Wu Y (2016) Co-contamination of Cu and Cd in paddy fields: using periphyton to entrap heavy metals. J Hazard Mater 304:150–158

    Article  CAS  Google Scholar 

  • Yao H, Xu J, Huang C (2003) Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal polluted paddy soils. Geoderma 115:139–148

    Article  CAS  Google Scholar 

  • Zeng LS, Liao M, Chen CL, Huang CY (2007) Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil–lead–rice (Oryza sativa L.) system. Ecotoxicol Environ Saf 67(1):67–74

    Article  CAS  Google Scholar 

  • Zhang YB, Cao N, Su XG, Xu XH, Yang F, Yang ZM (2009) Effects of soil and water conservation measures on soil properties in the low mountain and hill area of Jilin province. Bull Soil Water Conserv 5:0–53

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Afzaal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Afzaal, M., Mukhtar, S., Malik, A., Murtaza, R., Nazar, M. (2018). Paddy Soil Microbial Diversity and Enzymatic Activity in Relation to Pollution. In: Hashmi, M., Varma, A. (eds) Environmental Pollution of Paddy Soils. Soil Biology, vol 53. Springer, Cham. https://doi.org/10.1007/978-3-319-93671-0_9

Download citation

Publish with us

Policies and ethics