Skip to main content

Characterization of a Virtual Glove for Hand Rehabilitation Based on Orthogonal LEAP Controllers

  • Conference paper
  • First Online:
Pattern Recognition Applications and Methods (ICPRAM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10857))

  • 630 Accesses

Abstract

Hand rehabilitation therapy is fundamental for post-stroke or post-surgery impairments. Traditional rehabilitation requires the presence of a therapist for executing and controlling therapy: this implies high costs, stress for the patient, and subjective evaluation of the therapy effectiveness. Alternative approaches, based on mechanical and tracking-based gloves, have been recently proposed. Mechanical devices are often expensive, cumbersome and patient specific, while tracking-based devices are not subject to this limitations, but, especially if based on a single tracking sensor, could suffer from occlusions. In this paper a multi-sensors approach, the Virtual Glove (VG), based on the simultaneous use of two orthogonal LEAP motion controllers, was presented. In particular, the VG design was summarized, an engineered version was presented and its characterization was performed through spatial measurements. Measurements have been compared with those collected with a accurate spatial positioning system for evaluating the VG precision. The proposed strategy described the procedure to be used for VG assembly and for making it to correctly operate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kopp, B., Kunkel, A., Mnickel, W., Villringer, K., Taub, E., Flor, H.: Plasticity in the motor system related to therapy-induced improvement of movement after stroke. Neuroreport 10, 807–810 (1999). https://doi.org/10.1097/00001756-199903170-00026

    Article  Google Scholar 

  2. Liepert, J., Bauder, H., Miltner, W.H.R., Taub, E., Weiller, C.: Treatment-induced cortical reorganization after stroke in humans. Stroke 31, 1210–1216 (2000). https://doi.org/10.1161/01.STR.31.6.1210

    Article  Google Scholar 

  3. Hallett, M.: Plasticity of the human motor cortex and recovery from stroke. Brain Res. Rev. 36, 169–174 (2001). https://doi.org/10.1016/S0165-0173(01)00092-3

    Article  Google Scholar 

  4. Arya, K.N., Pandian, S., Verma, R., Garg, R.K.: Movement therapy induced neural reorganization and motor recovery in stroke: a review. J. Bodywork Mov. Ther. 15, 528–537 (2011). https://doi.org/10.1016/j.jbmt.2011.01.023

    Article  Google Scholar 

  5. Burgar, C.G., Lum, P.S., Shor, P.C., Van Der Loos, H.F.M.: Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. J. Rehabil. Res. Dev. 37, 663–673 (2000). http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.551.4188&rep=rep1&type=pdf

  6. Kahn, L.E., Lum, P.S., Rymer, W.Z., Reinkensmeyer, D.J.: Robot-assisted movement training for the stroke-impaired arm: does it matter what the robot does? J. Rehabil. Res. Dev. 43, 619 (2006). https://doi.org/10.1682/JRRD.2005.03.0056

    Article  Google Scholar 

  7. Placidi, G.: A smart virtual glove for the hand telerehabilitation. Comput. Biol. Med. 37, 1100–1107 (2007). https://doi.org/10.1016/j.compbiomed.2006.09.011

    Article  Google Scholar 

  8. Franchi, D., Maurizi, A., Placidi, G.: A numerical hand model for a virtual glove rehabilitation system. In: Proceedings of the IEEE Medical Measurement and Applications, MeMeA 2009, pp. 41–44 (2009). https://doi.org/10.1109/MEMEA.2009.5167951

  9. Franchi, D., Maurizi, A., Placidi, G.: Characterization of a simmechanics model for a virtual glove rehabilitation system. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds.) CompIMAGE 2010. LNCS, vol. 6026, pp. 141–150. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12712-0_13

    Chapter  Google Scholar 

  10. Zimmerli, L., Jacky, M., Lnenburger, L., Riener, R., Bolliger, M.: Increasing patient engagement during virtual reality-based motor rehabilitation. Arch. Phys. Med. Rehabil. 94, 1737–1746 (2013). https://doi.org/10.1016/j.apmr.2013.01.029

    Article  Google Scholar 

  11. Placidi, G., Avola, D., Iacoviello, D., Cinque, L.: Overall design and implementation of the virtual glove. Comput. Biol. Med. 43, 1927–1940 (2013). https://doi.org/10.1016/j.compbiomed.2013.08.026

    Article  Google Scholar 

  12. Llorns, R., No, E., Colomer, C., Alcaiz, M.: Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch. Phys. Med. Rehabil. 96, 418–425 (2015). https://doi.org/10.1016/j.apmr.2014.10.019

    Article  Google Scholar 

  13. Placidi, G., Cinque, L., Petracca, A., Polsinelli, M., Spezialetti, M.: A virtual glove system for the hand rehabilitation based on two orthogonal leap motion controllers. In: Proceedings of the 6th International Conference on Pattern Recognition Applications and Methods, ICPRAM, vol. 1, pp. 184–192 (2017). https://doi.org/10.5220/0006197801840192

  14. Lum, P.S., Godfrey, S.B., Brokaw, E.B., Holley, R.J., Nichols, D.: Robotic approaches for rehabilitation of hand function after stroke. Am. J. Phys. Med. Rehabil. 91, S242–S254 (2012). https://doi.org/10.1097/PHM.0b013e31826bcedb

    Article  Google Scholar 

  15. Maciejasz, P., Eschweiler, J., Gerlach-Hahn, K., Jansen-Troy, A., Leonhardt, S.: A survey on robotic devices for upper limb rehabilitation. J. Neuroeng. Rehabil. 11, 10–1186 (2014). https://doi.org/10.1186/1743-0003-11-3

    Article  Google Scholar 

  16. Rusk, Z., Antonya, C., Horvth, I.: Methodology for controlling contact forces in interactive grasping simulation. Int. J. Virtual Reality 10, 1 (2011)

    Google Scholar 

  17. Avola, D., Spezialetti, M., Placidi, G.: Design of an efficient framework for fast prototyping of customized humancomputer interfaces and virtual environments for rehabilitation. Comput. Methods Programs Biomed. 110, 490–502 (2013). https://doi.org/10.1016/j.cmpb.2013.01.009

    Article  Google Scholar 

  18. Chaudhary, A., Raheja, J.L., Das, K., Raheja, S.: Intelligent approaches to interact with machines using hand gesture recognition in natural way: a survey. arXiv preprint arXiv:1303.2292 (2013). https://doi.org/10.5121/ijcses.2011.210

  19. Placidi, G., Avola, D., Ferrari, M., Iacoviello, D., Petracca, A., Quaresima, V., Spezialetti, M.: A low-cost real time virtual system for postural stability assessment at home. Comput. Methods Programs Biomed. 117, 322–333 (2014). https://doi.org/10.1016/j.cmpb.2014.06.020

    Article  Google Scholar 

  20. Charles, D., Pedlow, K., McDonough, S., Shek, K., Charles, T.: Close range depth sensing cameras for virtual reality based hand rehabilitation. J. Assistive Technol. 8, 138–149 (2014). https://doi.org/10.1108/JAT-02-2014-0007

    Article  Google Scholar 

  21. Placidi, G., Petracca, A., Pagnani, N., Spezialetti, M., Iacoviello, D.: A virtual system for postural stability assessment based on a TOF camera and a mirror. In: Proceedings of the 3rd 2015 Workshop on ICTs for Improving Patients Rehabilitation Research Techniques, pp. 77–80 (2015). https://doi.org/10.1145/2838944.2838963

  22. Leap motion inc. http://www.leapmotion.com. Accessed 2017

  23. Bachmann, D., Weichert, F., Rinkenauer, G.: Evaluation of the leap motion controller as a new contact-free pointing device. Sensors 15, 214 (2015). https://doi.org/10.3390/s150100214

    Article  Google Scholar 

  24. Petracca, A., Carrieri, M., Avola, D., Basso Moro, S., Brigadoi, S., Lancia, S., Spezialetti, M., Ferrari, M., Quaresima, V., Placidi, G.: A virtual ball task driven by forearm movements for neuro-rehabilitation. In: 2015 International Conference on Virtual Rehabilitation Proceedings (ICVR), pp. 162–163 (2015). https://doi.org/10.1109/ICVR.2015.7358600

  25. Sabata, B., Aggarwal, J.K.: Estimation of motion from a pair of range images: a review. CVGIP: Image Underst. 54, 309–324 (1991). https://doi.org/10.1016/1049-9660(91)90032-K

    Article  MATH  Google Scholar 

  26. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992). https://doi.org/10.1109/34.121791

    Article  Google Scholar 

  27. Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. Appl. 9, 272–290 (1997). https://doi.org/10.1007/s001380050048

    Article  Google Scholar 

Download references

Acknowledgments

The Authors are very grateful the Department of Physics and Chemical Sciences of the University of L’Aquila for having allowed the use of the mill and, in particular, to Mr Francesco del Grande for his invaluable help in constructing the Virtual Glove support and collecting experimental measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Placidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Placidi, G., Cinque, L., Polsinelli, M., Spezialetti, M. (2018). Characterization of a Virtual Glove for Hand Rehabilitation Based on Orthogonal LEAP Controllers. In: De Marsico, M., di Baja, G., Fred, A. (eds) Pattern Recognition Applications and Methods. ICPRAM 2017. Lecture Notes in Computer Science(), vol 10857. Springer, Cham. https://doi.org/10.1007/978-3-319-93647-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93647-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93646-8

  • Online ISBN: 978-3-319-93647-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics