Skip to main content

Efficient Decryption Algorithms for Extension Field Cancellation Type Encryption Schemes

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10946))

Included in the following conference series:

Abstract

Extension Field Cancellation (EFC) was proposed by Alan et al. at PQCrypto 2016 as a new trapdoor for constructing secure multivariate encryption cryptographic schemes. Along with this trapdoor, two schemes \(\text {EFC}_p^{-}\) and \(\text {EFC}_{pt^2}^{-}\) that apply this trapdoor and some modifiers were proposed. Though their security seems to be high enough, their decryption efficiency has room for improvement. In this paper, we introduce a new and more efficient decryption approach for \(\text {EFC}_p^{-}\) and \(\text {EFC}_{pt^2}^{-}\), which manages to avoid all redundant computation involved in the original decryption algorithms, and theoretically speed up the decryption process of \(\text {EFC}_p^{-}\) and \(\text {EFC}_{pt^2}^{-}\) by around 3.4 and 8.5 times, respectively, under 128-bit security parameters with our new designed private keys for them. Meanwhile, our approach does not interfere with the public key, so the security remains the same. The implementation results of both decryption algorithms for \(\text {EFC}_p^{-}\) and \(\text {EFC}_{pt^2}^{-}\) are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-key engines: \(\cal{MQ}\)-cryptosystems as replacement for elliptic curves? In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85053-3_4

    Chapter  Google Scholar 

  2. Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H., Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04138-9_3

    Chapter  Google Scholar 

  3. Coppersmith, D., Stern, J., Vaudenay, S.: Attacks on the birational permutation signature schemes. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 435–443. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_37

    Chapter  Google Scholar 

  4. Czypek, P., Heyse, S., Thomae, E.: Efficient implementations of MQPKS on constrained devices. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 374–389. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_22

    Chapter  Google Scholar 

  5. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). https://doi.org/10.1007/11496137_12

    Chapter  Google Scholar 

  6. Goodn, D.: NSA preps quantum-resistant algorithms to head off cryptoapocalypse (2015)

    Google Scholar 

  7. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_4

    Chapter  Google Scholar 

  8. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_15

    Chapter  Google Scholar 

  9. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48, 203–209 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_39

    Chapter  Google Scholar 

  11. National Institute of Standards and Technology. Call for proposals (2017). https://csrc.nist.gov/projects/post-quantum-cryptography. Accessed 18 Apr 2018

  12. Patarin, J.: Cryptanalysis of the matsumoto and imai public key scheme of Eurocrypt’88. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 248–261. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-44750-4_20

    Chapter  Google Scholar 

  13. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_4

    Chapter  Google Scholar 

  14. Porras, J., Baena, J., Ding, J.: ZHFE, a new multivariate public key encryption scheme. In: Mosca, M. (ed.) PQCrypto 2014. LNCS, vol. 8772, pp. 229–245. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11659-4_14

    Chapter  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York (1979)

    MATH  Google Scholar 

  16. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Szepieniec, A., Ding, J., Preneel, B.: Extension field cancellation: a new central trapdoor for multivariate quadratic systems. In: Takagi, T. (ed.) PQCrypto 2016. LNCS, vol. 9606, pp. 182–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29360-8_12

    Chapter  Google Scholar 

  19. Tang, S., Yi, H., Ding, J., Chen, H., Chen, G.: High-speed hardware implementation of rainbow signature on FPGAs. In: Yang, B.-Y. (ed.) PQCrypto 2011. LNCS, vol. 7071, pp. 228–243. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25405-5_15

    Chapter  Google Scholar 

  20. Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38616-9_16

    Chapter  Google Scholar 

  21. Yasuda, T., Dahan, X., Huang, Y.J., Takagi, T., Sakurai, K.: MQ challenge: hardness evaluation of solving multivariate quadratic problems. Cryptology ePrint Archive: Report 2015/275 (2015)

    Google Scholar 

  22. Yasuda, T., Sakurai, K.: A multivariate encryption scheme with rainbow. In: Qing, S., Okamoto, E., Kim, K., Liu, D. (eds.) ICICS 2015. LNCS, vol. 9543, pp. 236–251. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29814-6_19

    Chapter  Google Scholar 

Download references

Acknowledgments

The second and fourth authors were supported by JST CREST (Grant Number JPMJCR14D6). The third author thanks the Japanese Society for the Promotion of Science (JSPS) for financial support under grant KAKENHI 16K17644 and KAKENHI 15H03613.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yacheng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Ikematsu, Y., Duong, D.H., Takagi, T. (2018). Efficient Decryption Algorithms for Extension Field Cancellation Type Encryption Schemes. In: Susilo, W., Yang, G. (eds) Information Security and Privacy. ACISP 2018. Lecture Notes in Computer Science(), vol 10946. Springer, Cham. https://doi.org/10.1007/978-3-319-93638-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93638-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93637-6

  • Online ISBN: 978-3-319-93638-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics