Skip to main content

Reasoning for Autonomous Agents in Dynamic Domains: Towards Automatic Satisfaction of the Module Property

  • Conference paper
  • First Online:
Agents and Artificial Intelligence (ICAART 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10839))

Included in the following conference series:

Abstract

State-of-the-art service robots that fetch a cup of coffee and clean up rooms require cognitive skills such as learning, planning, and reasoning. Especially reasoning in dynamic and human populated environments demands for novel approaches that can handle comprehensive and fluent knowledge bases. Our long-term objective is an autonomous robotic team that is capable of handling dynamic and domestic environments. Therefore, we combined ALICA – A Language for Interactive Cooperative Agents – with the Answer Set Programming solver Clingo. The answer set programming approach offers multi-shot solving techniques and non-monotonic stable model semantics, but requires to keep the Module Property satisfied. We developed an automatic satisfaction of the Module Property and chose topological path planning as our evaluation scenario. We utilised the Region Connection Calculus as the underlying formalism of our evaluation and investigated the scalability of our implementation. The results show that our approach handles dynamic environments and scales up to appropriately large problem sizes while automatically satisfying the Module Property.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.satcompetition.org/ [Online; accessed September 12, 2017].

    http://aspcomp2015.dibris.unige.it/ [Online; accessed September 12, 2017].

References

  1. Wurman, P.R., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Mag. 29, 9–19 (2008)

    Article  Google Scholar 

  2. Hars, A.: Driverless Car Market Forecasts (2017). http://www.driverless-future.com/?page_id=384. 9 May 2017

  3. Tomizawa, F.: Who is NAO? (2017). https://www.ald.softbankrobotics.com/en/cool-robots/nao. 9 May 2017

  4. Sullivan, A., Elkin, M., Umaschi Bers, M.: KIBO robot demo: engaging young children in programming and engineering. In: Proceedings of the 14th International Conference on Interaction Design and Children, pp. 418–421. ACM (2015)

    Google Scholar 

  5. van Overbeeke, B.: Service Robot Amigo at the RoboCup Dutch Open 2012 (2011). https://www.flickr.com/photos/robocup2013/9015099760. 19 May 2017

  6. Brachman, R.J., Levesque, H.J.: Knowledge Representation and Reasoning. Morgan Kaufmann Series in Artificial Intelligence. Morgan Kaufmann, Los Altos (2003)

    MATH  Google Scholar 

  7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + Control: Extended Report (2014). https://www.cs.uni-potsdam.de/wv/publications/TEMP_journals/corr/GebserKKS14x.pdf. 10 Oct 2017

  8. Gebser, M., Janhunen, T., Jost, H., Kaminski, R., Schaub, T.: ASP solving for expanding universes. In: Calimeri, F., Ianni, G., Truszczynski, M. (eds.) Proceedings of the 13th International Conference on Logic Programming and Non-monotonic Reasoning, pp. 354–367. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-319-23264-5_30

    Chapter  Google Scholar 

  9. Skubch, H.: Modelling and Controlling of Behaviour for Autonomous Mobile Robots, 1st edn. Springer Vieweg, Heidelberg (2013). https://doi.org/10.1007/978-3-658-00811-6

    Book  MATH  Google Scholar 

  10. Opfer, S., Niemczyk, S., Geihs, K.: Multi-agent plan verification with answer set programming. In: Aßmann, U., Brugali, D., Piechnick, C. (eds.) Proceedings of the Third Workshop on Model-Driven Robot Software Engineering. ACM (2016)

    Google Scholar 

  11. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent Agents: The Answer-Set Programming Approach. Cambridge University Press, Cambridge (2014)

    Book  Google Scholar 

  12. Opfer, S., Jakob, S., Geihs, K.: Reasoning for autonomous agents in dynamic domains. In: van den Herik, J., Rocha, A.P., Filipe, J. (eds.) Proceedings of the 9th International Conference on Agents and Artificial Intelligence, pp. 340–351. ScitePress Digital Library (2017)

    Google Scholar 

  13. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: Nebel, B., Rich, C., Swartout, W. (eds.) Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning, vol. 92, San Francisco, CA, USA, pp. 165–176. Morgan Kaufmann (1992)

    Google Scholar 

  14. Skubch, H., Saur, D., Geihs, K.: Resolving conflicts in highly reactive teams. In: Luttenberger, N., Peters, H. (eds.) 17th GI/ITG Conference on Communication in Distributed Systems (KiVS 2011). OpenAccess Series in Informatics (OASIcs), vol. 17, pp. 170–175, Dagstuhl, Germany, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2011)

    Google Scholar 

  15. Skubch, H., Wagner, M., Reichle, R., Geihs, K.: A modelling language for cooperative plans in highly dynamic domains. In: van de Molengraft, M., Zweigle, O. (eds.) Special Issue on Advances in Intelligent Robot Design for the Robocup Middle Size League, vol. 21, pp. 423–433. Elsevier (2011)

    Article  Google Scholar 

  16. Gat, E.: On three-layer architectures. In: Kortenkamp, D., Bonasso, R.P., Murphy, R. (eds.) Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems, pp. 195–210. MIT Press, Cambridge (1998)

    Google Scholar 

  17. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Commun. ACM 54, 92–103 (2011)

    Article  Google Scholar 

  18. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Logic 7, 499–562 (2006)

    Article  MathSciNet  Google Scholar 

  19. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2_2

    Chapter  Google Scholar 

  20. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.: Answer set programming for stream reasoning. In: Eiter, T., McIlraith, S. (eds.) Proceedings of the Thirteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2012), vol. 13, pp. 613–617. AAAI Press (2012)

    Google Scholar 

  21. Gatsoulis, Y., Alomari, M., Burbridge, C., Dondrup, C., Duckworth, P., Lightbody, P., Hanheide, M., Hawes, N., Hogg, D.C., Cohn, A.G.: QSRlib: a software library for online acquisition of qualitative spatial relations from video. In: Bredeweg, B., Kansou, K., Klenk, M. (eds.) Proceedings of the 29th International Workshop on Qualitative Reasoning, pp. 36–41 (2016)

    Google Scholar 

  22. Witsch, A.: Decision Making for Teams of Mobile Robots. Dissertation, University of Kassel, Kassel, Germany (2016)

    Google Scholar 

  23. Sharir, M.: A strong-connectivity algorithm and its applications in data flow analysis. Comput. Math. Appl. 7, 67–72 (1981)

    Article  MathSciNet  Google Scholar 

  24. Schaub, T.: Module Composition, 13 October 2016. https://www.cs.uni-potsdam.de/~torsten/ijcai15tutorial/asp.pdf. 9 May 2017

  25. Foote, T., Wise, M.: TurtleBot Website (2010). http://www.turtlebot.com/. 9 May 2017

  26. Heintz, F., Kvarnström, J., Doherty, P.: Bridging the sense-reasoning gap: DyKnow - stream-based middleware for knowledge processing. Adv. Eng. Inform. 24, 14–26 (2010)

    Article  Google Scholar 

  27. Tenorth, M., Beetz, M.: KnowRob: a knowledge processing infrastructure for cognition-enabled robots. Int. J. Robot. Res. 32, 566–590 (2013)

    Article  Google Scholar 

  28. Erdem, E., Aker, E., Patoglu, V.: Answer set programming for collaborative housekeeping robotics: representation, reasoning, and execution. J. Intell. Serv. Robots 5, 275–291 (2012)

    Article  Google Scholar 

  29. Speer, R., Havasi, C.: ConceptNet 5: a large semantic network for relational knowledge. In: Gurevych, I., Kim, J. (eds.) The People’s Web Meets NLP. Theory and Applications of Natural Language Processing, pp. 161–176. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35085-6_6

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stephan Opfer , Stefan Jakob or Kurt Geihs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Opfer, S., Jakob, S., Geihs, K. (2018). Reasoning for Autonomous Agents in Dynamic Domains: Towards Automatic Satisfaction of the Module Property. In: van den Herik, J., Rocha, A., Filipe, J. (eds) Agents and Artificial Intelligence. ICAART 2017. Lecture Notes in Computer Science(), vol 10839. Springer, Cham. https://doi.org/10.1007/978-3-319-93581-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93581-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93580-5

  • Online ISBN: 978-3-319-93581-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics