Skip to main content

Heat-Stress Exercise and Cooling

  • Chapter
  • First Online:
Heat Stress in Sport and Exercise
  • 1887 Accesses

Abstract

Athletes regularly adopt cooling strategies before (pre-cooling) and/or during (per-cooling) exercise in the heat to alleviate the extra thermal strain. The most effective cooling interventions involve water immersion, but often lack the practicality desired. Moreover, the effectiveness of practical cooling strategies to improve exercise performance and reduce actual and perceived thermal strain varies. Exercise in the heat places the body under a large thermal strain and although pre- or per-cooling can help, heat illnesses may still occur. The rapid reduction in core body temperature is vitally important to minimise the consequences of any heat illness experienced. This chapter will discuss external and internal cooling strategies that can be adopted before, during, or after exercise undertaken in a hot environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Periard JD, Racinais S, Timpka T, Dahlstrom O, Spreco A, Jacobsson J, et al. Strategies and factors associated with preparing for competing in the heat: a cohort study at the 2015 IAAF world athletics championships. Br J Sports Med. 2017;51(4):264–70.

    Article  PubMed  Google Scholar 

  2. Caldwell JN, van den Heuvel AMJ, Kerry P, Clark MJ, Peoples GE, Taylor NAS. A vascular mechanism to explain thermally mediated variations in deep-body cooling rates during the immersion of profoundly hyperthermic individuals. Exp Physiol. 2018;103(4):512–22.

    Article  PubMed  Google Scholar 

  3. Gonzalez-Alonso J, Teller C, Andersen SL, Jensen FB, Hyldig T, Nielsen B. Influence of body temperature on the development of fatigue during prolonged exercise in the heat. J Appl Physiol. 1999;86(3):1032–9.

    Article  CAS  PubMed  Google Scholar 

  4. Booth J, Marino FE, Ward JJ. Improved running performance in hot humid conditions following whole body precooling. Med Sci Sports Exerc. 1997;29(7):943–9.

    Article  CAS  PubMed  Google Scholar 

  5. Siegel R, Mate J, Watson G, Nosaka K, Laursen PB. Pre-cooling with ice slurry ingestion leads to similar run times to exhaustion in the heat as cold water immersion. J Sports Sci. 2012;30(2):155–65.

    Article  PubMed  Google Scholar 

  6. Sleivert GG, Cotter JD, Roberts WS, Febbraio MA. The influence of whole-body vs. torso pre-cooling on physiological strain and performance of high-intensity exercise in the heat. Comp Biochem Physiol A Mol Integr Physiol. 2001;128(4):657–66.

    Article  CAS  PubMed  Google Scholar 

  7. Vaile J, Halson S, Gill N, Dawson B. Effect of cold water immersion on repeat cycling performance and thermoregulation in the heat. J Sports Sci. 2008;26(5):431–40.

    Article  PubMed  Google Scholar 

  8. Tyler CJ, Reeve T, Cheung SS. Cold-induced vasodilation during single digit immersion in 0 degrees C and 8 degrees C water in men and women. PLoS One. 2015;10(4):e0122592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sendowski I, Savourey G, Besnard Y, Bittel J. Cold induced vasodilatation and cardiovascular responses in humans during cold water immersion of various upper limb areas. Eur J Appl Physiol Occup Physiol. 1997;75(6):471–7.

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Y, Davis JK, Casa DJ, Bishop PA. Optimizing cold water immersion for exercise-induced hyperthermia: a meta-analysis. Med Sci Sports Exerc. 2015;47(11):2464–72.

    Article  CAS  PubMed  Google Scholar 

  11. Racinais S, Blonc S, Oksa J, Hue O. Does the diurnal increase in central temperature interact with pre-cooling or passive warm-up of the leg? J Sci Med Sport. 2009;12(1):97–100.

    Article  PubMed  Google Scholar 

  12. Goosey-Tolfrey V, Swainson M, Boyd C, Atkinson G, Tolfrey K. The effectiveness of hand cooling at reducing exercise-induced hyperthermia and improving distance-race performance in wheelchair and able-bodied athletes. J Appl Physiol (1985). 2008;105(1):37–43.

    Article  Google Scholar 

  13. Marsh D, Sleivert G. Effect of precooling on high intensity cycling performance. Br J Sports Med. 1999;33(6):393–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cuttell SA, Kiri V, Tyler C. A comparison of 2 practical cooling methods on cycling capacity in the heat. J Athl Train. 2016;51(7):525–32.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Luomala MJ, Oksa J, Salmi JA, Linnamo V, Holmer I, Smolander J, et al. Adding a cooling vest during cycling improves performance in warm and humid conditions. J Therm Biol. 2012;37:47–55.

    Article  Google Scholar 

  16. Arngrimsson SA, Petitt DS, Stueck MG, Jorgensen DK, Cureton KJ. Cooling vest worn during active warm-up improves 5-km run performance in the heat. J Appl Physiol. 2004;96(5):1867–74.

    Article  PubMed  Google Scholar 

  17. Clarke ND, Maclaren DP, Reilly T, Drust B. Carbohydrate ingestion and pre-cooling improves exercise capacity following soccer-specific intermittent exercise performed in the heat. Eur J Appl Physiol. 2011;111(7):1447–55.

    Article  CAS  PubMed  Google Scholar 

  18. Price MJ, Boyd C, Goosey-Tolfrey VL. The physiological effects of pre-event and midevent cooling during intermittent running in the heat in elite female soccer players. Appl Physiol Nutr Metab. 2009;34(5):942–9.

    Article  PubMed  Google Scholar 

  19. Webster J, Holland EJ, Sleiverts G, Laing RM, Niven BE. A light-weight cooling vest enhances performance of athletes in the heat. Ergonomics. 2005;48(7):821–37.

    Article  CAS  PubMed  Google Scholar 

  20. Bongers CC, Thijssen DH, Veltmeijer MT, Hopman MT, Eijsvogels TM. Precooling and percooling (cooling during exercise) both improve performance in the heat: a meta-analytical review. Br J Sports Med. 2015;49(6):377–84.

    Article  PubMed  Google Scholar 

  21. Tyler CJ, Sunderland C, Cheung SS. The effect of cooling prior to and during exercise on exercise performance and capacity in the heat: a meta-analysis. Br J Sports Med. 2015;49(1):7–13.

    Article  PubMed  Google Scholar 

  22. Eijsvogels TM, Bongers CC, Veltmeijer MT, Moen MH, Hopman M. Cooling during exercise in temperate conditions: impact on performance and thermoregulation. Int J Sports Med. 2014;35(10):840–6.

    Article  CAS  PubMed  Google Scholar 

  23. Bogerd N, Perret C, Bogerd CP, Rossi RM, Daanen HA. The effect of pre-cooling intensity on cooling efficiency and exercise performance. J Sports Sci. 2010;28(7):771–9.

    Article  PubMed  Google Scholar 

  24. Cureton KJ, Sparling PB, Evans BW, Johnson SM, Kong UD, Purvis JW. Effect of experimental alterations in excess weight on aerobic capacity and distance running performance. Med Sci Sports. 1978;10(3):194–9.

    CAS  PubMed  Google Scholar 

  25. Kenny GP, Schissler AR, Stapleton J, Piamonte M, Binder K, Lynn A, et al. Ice cooling vest on tolerance for exercise under uncompensable heat stress. J Occup Environ Hyg. 2011;8(8):484–91.

    Article  PubMed  Google Scholar 

  26. Gordon NF, Bogdanffy GM, Wilkinson J. Effect of a practical neck cooling device on core temperature during exercise. Med Sci Sports Exerc. 1990;22(2):245–9.

    CAS  PubMed  Google Scholar 

  27. Shvartz E. Effect of neck versus chest cooling on responses to work in heat. J Appl Physiol. 1976;40(5):668–72.

    Article  CAS  PubMed  Google Scholar 

  28. Tikuisis P, Meunier P, Jubenville CE. Human body surface area: measurement and prediction using three dimensional body scans. Eur J Appl Physiol. 2001;85(3–4):264–71.

    Article  CAS  PubMed  Google Scholar 

  29. Cotter JD, Taylor NA. The distribution of cutaneous sudomotor and alliesthesial thermosensitivity in mildly heat-stressed humans: an open-loop approach. J Physiol. 2005;565(Pt 1):335–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ando S, Komiyama T, Sudo M, Kiyonaga A, Tanaka H, Higaki Y. The effects of temporal neck cooling on cognitive function during strenuous exercise in a hot environment: a pilot study. BMC Res Notes. 2015;8:202.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bulbulian R, Shapiro R, Murphy M, Levenhagen D. Effectiveness of a commercial head-neck cooling device. J Strength Cond Res. 1999;13(3):198–205.

    Google Scholar 

  32. Lee JK, Koh AC, Koh SX, Liu GJ, Nio AQ, Fan PW. Neck cooling and cognitive performance following exercise-induced hyperthermia. Eur J Appl Physiol. 2014;114(2):375–84.

    Article  PubMed  Google Scholar 

  33. Sunderland C, Stevens R, Everson B, Tyler CJ. Neck-cooling improves repeated sprint performance in the heat. Front Physiol. 2015;6:314.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Tyler CJ, Wild P, Sunderland C. Practical neck cooling and time-trial running performance in a hot environment. Eur J Appl Physiol. 2010;110(5):1063–74.

    Article  PubMed  Google Scholar 

  35. Tyler CJ, Sunderland C. Cooling the neck region during exercise in the heat. J Athl Train. 2011;46(1):61–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tyler CJ, Sunderland C. Neck cooling and running performance in the heat: single versus repeated application. Med Sci Sports Exerc. 2011;43(12):2388–95.

    Article  PubMed  Google Scholar 

  37. Nunneley SA, Troutman SJ Jr, Webb P. Head cooling in work and heat stress. Aerosp Med. 1971;42(1):64–8.

    CAS  PubMed  Google Scholar 

  38. Junge N, Jorgensen R, Flouris AD, Nybo L. Prolonged self-paced exercise in the heat - environmental factors affecting performance. Temperature (Austin). 2016;3(4):539–48.

    Article  Google Scholar 

  39. Morrison SA, Cheung S, Cotter JD. Importance of airflow for physiologic and ergogenic effects of precooling. J Athl Train. 2014;49(5):632–9.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Saunders AG, Dugas JP, Tucker R, Lambert MI, Noakes TD. The effects of different air velocities on heat storage and body temperature in humans cycling in a hot, humid environment. Acta Physiol Scand. 2005;183(3):241–55.

    Article  CAS  PubMed  Google Scholar 

  41. Adams WC, Mack GW, Langhans GW, Nadel ER. Effects of varied air velocity on sweating and evaporative rates during exercise. J Appl Physiol (1985). 1992;73(6):2668–74.

    Article  CAS  Google Scholar 

  42. Mora-Rodriguez R, del CJ, Aguado-Jimenez R, Estevez E. Separate and combined effects of airflow and rehydration during exercise in the heat. Med Sci Sports Exerc. 2007;39(10):1720–6.

    Article  PubMed  Google Scholar 

  43. Otani H, Kaya M, Tamaki A, Watson P, Maughan RJ. Air velocity influences thermoregulation and endurance exercise capacity in the heat. Appl Physiol Nutr Metab. 2018;43(2):131–8.

    Article  PubMed  Google Scholar 

  44. Schranner D, Scherer L, Lynch GP, Korder S, Brotherhood JR, Pluim BM, et al. In-play cooling interventions for simulated match-play tennis in hot/humid conditions. Med Sci Sports Exerc. 2017;49(5):991–8.

    Article  PubMed  Google Scholar 

  45. Barwood MJ, Corbett J, White D, James J. Early change in thermal perception is not a driver of anticipatory exercise pacing in the heat. Br J Sports Med. 2012;46(13):936–42.

    Article  PubMed  Google Scholar 

  46. Barwood MJ, Corbett J, White DK. Spraying with 0.20% L-menthol does not enhance 5 km running performance in the heat in untrained runners. J Sports Med Phys Fitness. 2014;54(5):595–604.

    CAS  PubMed  Google Scholar 

  47. Barwood MJ, Corbett J, Thomas K, Twentyman P. Relieving thermal discomfort: effects of sprayed L-menthol on perception, performance, and time trial cycling in the heat. Scand J Med Sci Sports. 2015;25(Suppl 1):211–8.

    Article  PubMed  Google Scholar 

  48. Gillis DJ, House JR, Tipton MJ. The influence of menthol on thermoregulation and perception during exercise in warm, humid conditions. Eur J Appl Physiol. 2010;110(3):609–18.

    Article  CAS  PubMed  Google Scholar 

  49. Gillis DJ, Barwood MJ, Newton PS, House JR, Tipton MJ. The influence of a menthol and ethanol soaked garment on human temperature regulation and perception during exercise and rest in warm, humid conditions. J Therm Biol. 2016;58:99–105.

    Article  CAS  PubMed  Google Scholar 

  50. Schlader ZJ, Simmons SE, Stannard SR, Mundel T. The independent roles of temperature and thermal perception in the control of human thermoregulatory behavior. Physiol Behav. 2011;103(2):217–24.

    Article  CAS  PubMed  Google Scholar 

  51. Kounalakis SN, Botonis PG, Koskolou MD, Geladas ND. The effect of menthol application to the skin on sweating rate response during exercise in swimmers and controls. Eur J Appl Physiol. 2010;109(2):183–9.

    Article  CAS  PubMed  Google Scholar 

  52. Johnson CD, Melanaphy D, Purse A, Stokesberry SA, Dickson P, Zholos AV. Transient receptor potential melastatin 8 channel involvement in the regulation of vascular tone. Am J Physiol Heart Circ Physiol. 2009;296(6):H1868–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yosipovitch G, Szolar C, Hui XY, Maibach H. Effect of topically applied menthol on thermal, pain and itch sensations and biophysical properties of the skin. Arch Dermatol Res. 1996;288(5–6):245–8.

    Article  CAS  PubMed  Google Scholar 

  54. Tajino K, Matsumura K, Kosada K, Shibakusa T, Inoue K, Fushiki T, et al. Application of menthol to the skin of whole trunk in mice induces autonomic and behavioral heat-gain responses. Am J Physiol Regul Integr Comp Physiol. 2007;293(5):R2128–35.

    Article  CAS  PubMed  Google Scholar 

  55. Hasegawa H, Takatori T, Komura T, Yamasaki M. Combined effects of pre-cooling and water ingestion on thermoregulation and physical capacity during exercise in a hot environment. J Sports Sci. 2006;24(1):3–9.

    Article  PubMed  Google Scholar 

  56. Lee JK, Shirreffs SM, Maughan RJ. Cold drink ingestion improves exercise endurance capacity in the heat. Med Sci Sports Exerc. 2008;40(9):1637–44.

    Article  PubMed  Google Scholar 

  57. Mundel T, King J, Collacott E, Jones DA. Drink temperature influences fluid intake and endurance capacity in men during exercise in a hot, dry environment. Exp Physiol. 2006;91(5):925–33.

    Article  PubMed  Google Scholar 

  58. Ihsan M, Landers G, Brearley M, Peeling P. Beneficial effects of ice ingestion as a precooling strategy on 40-km cycling time-trial performance. Int J Sports Physiol Perform. 2010;5(2):140–51.

    Article  PubMed  Google Scholar 

  59. Stanley J, Leveritt M, Peake JM. Thermoregulatory responses to ice-slush beverage ingestion and exercise in the heat. Eur J Appl Physiol. 2010;110(6):1163–73.

    Article  PubMed  Google Scholar 

  60. Zimmermann M, Landers G, Wallman KE, Saldaris J. The effects of crushed ice ingestion prior to steady state exercise in the heat. Int J Sport Nutr Exerc Metab. 2017;27(3):220–7.

    Article  PubMed  Google Scholar 

  61. Snipe RMJ, Costa RJS. Does the temperature of water ingested during exertional-heat stress influence gastrointestinal injury, symptoms, and systemic inflammatory profile? J Sci Med Sport. 2018;21(8):771–6.

    Article  PubMed  Google Scholar 

  62. Burdon C, O’Connor H, Gifford J, Shirreffs S, Chapman P, Johnson N. Effect of drink temperature on core temperature and endurance cycling performance in warm, humid conditions. J Sports Sci. 2010;28(11):1147–56.

    Article  PubMed  Google Scholar 

  63. Burdon CA, Hoon MW, Johnson NA, Chapman PG, O’Connor HT. The effect of ice slushy ingestion and mouthwash on thermoregulation and endurance performance in the heat. Int J Sport Nutr Exerc Metab. 2013;23(5):458–69.

    Article  PubMed  Google Scholar 

  64. Lee JK, Maughan RJ, Shirreffs SM. The influence of serial feeding of drinks at different temperatures on thermoregulatory responses during cycling. J Sports Sci. 2008;26(6):583–90.

    Article  PubMed  Google Scholar 

  65. Morris NB, Coombs G, Jay O. Ice slurry ingestion leads to a lower net heat loss during exercise in the heat. Med Sci Sports Exerc. 2016;48(1):114–22.

    Article  PubMed  Google Scholar 

  66. Jay O, Morris NB. Does cold water or ice slurry ingestion during exercise elicit a net body cooling effect in the heat? Sports Med. 2018;48(Suppl 1):17–29.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Stevens CJ, Mauger AR, Hassmen P, Taylor L. Endurance performance is influenced by perceptions of pain and temperature: theory, applications and safety considerations. Sports Med. 2018;48(3):525–37.

    Article  PubMed  Google Scholar 

  68. Mundel T, Jones DA. The effects of swilling an L(−)-menthol solution during exercise in the heat. Eur J Appl Physiol. 2010;109(1):59–65.

    Article  PubMed  Google Scholar 

  69. Stevens CJ, Thoseby B, Sculley DV, Callister R, Taylor L, Dascombe BJ. Running performance and thermal sensation in the heat are improved with menthol mouth rinse but not ice slurry ingestion. Scand J Med Sci Sports. 2016;26(10):1209–16.

    Article  CAS  PubMed  Google Scholar 

  70. Stevens CJ, Bennett KJ, Sculley DV, Callister R, Taylor L, Dascombe BJ. A comparison of mixed-method cooling interventions on preloaded running performance in the heat. J Strength Cond Res. 2017;31(3):620–9.

    Article  PubMed  Google Scholar 

  71. Riera F, Trong TT, Sinnapah S, Hue O. Physical and perceptual cooling with beverages to increase cycle performance in a tropical climate. PLoS One. 2014;9(8):e103718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tran TT, Riera F, Rinaldi K, Briki W, Hue O. Ingestion of a cold temperature/menthol beverage increases outdoor exercise performance in a hot, humid environment. PLoS One. 2015;10(4):e0123815.

    Article  CAS  Google Scholar 

  73. Pires W, Veneroso CE, Wanner SP, Pacheco DAS, Vaz GC, Amorim FT, et al. Association between exercise-induced hyperthermia and intestinal permeability: a systematic review. Sports Med. 2017;47(7):1389–403.

    Article  PubMed  Google Scholar 

  74. Schulze E, Daanen HA, Levels K, Casadio JR, Plews DJ, Kilding AE, et al. Effect of thermal state and thermal comfort on cycling performance in the heat. Int J Sports Physiol Perform. 2015;10(5):655–63.

    Article  PubMed  Google Scholar 

  75. Ross ML, Garvican LA, Jeacocke NA, Laursen PB, Abbiss CR, Martin DT, et al. Novel precooling strategy enhances time trial cycling in the heat. Med Sci Sports Exerc. 2011;43(1):123–33.

    Article  PubMed  Google Scholar 

  76. Brade C, Dawson B, Wallman K. Effects of different precooling techniques on repeat sprint ability in team sport athletes. Eur J Sport Sci. 2014;14(Suppl 1):S84–91.

    Article  PubMed  Google Scholar 

  77. Duffield R, Green R, Castle P, Maxwell N. Precooling can prevent the reduction of self-paced exercise intensity in the heat. Med Sci Sports Exerc. 2010;42(3):577–84.

    Article  PubMed  Google Scholar 

  78. Kay D, Taaffe DR, Marino FE. Whole-body pre-cooling and heat storage during self-paced cycling performance in warm humid conditions. J Sports Sci. 1999;17:937–44.

    Article  CAS  PubMed  Google Scholar 

  79. Quod MJ, Martin DT, Laursen PB, Gardner AS, Halson SL, Marino FE, et al. Practical precooling: effect on cycling time trial performance in warm conditions. J Sports Sci. 2008;26(14):1477–87.

    Article  PubMed  Google Scholar 

  80. Cotter JD, Sleivert GG, Roberts WS, Febbraio MA. Effect of pre-cooling, with and without thigh cooling, on strain and endurance exercise performance in the heat. Comp Biochem Physiol A Mol Integr Physiol. 2001;128(4):667–77.

    Article  CAS  PubMed  Google Scholar 

  81. Mitchell JB, McFarlin BK, Dugas JP. The effect of pre-exercise cooling on high intensity running performance in the heat. Int J Sports Med. 2003;24(2):118–24.

    Article  CAS  PubMed  Google Scholar 

  82. Yeargin SW, Casa DJ, McClung JM, Knight JC, Healey JC, Goss PJ, et al. Body cooling between two bouts of exercise in the heat enhances subsequent performance. J Strength Cond Res. 2006;20(2):383–9.

    PubMed  Google Scholar 

  83. Crowley GC, Garg A, Lohn MS, Van SN, Wade AJ. Effects of cooling the legs on performance in a standard Wingate anaerobic power test. Br J Sports Med. 1991;25(4):200–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bigland-Ritchie B, Thomas CK, Rice CL, Howarth JV, Woods JJ. Muscle temperature, contractile speed, and motoneuron firing rates during human voluntary contractions. J Appl Physiol. 1992;73(6):2457–61.

    Article  CAS  PubMed  Google Scholar 

  85. Febbraio MA, Snow RJ, Stathis CG, Hargreaves M, Carey MF. Effect of heat stress on muscle energy metabolism during exercise. J Appl Physiol. 1994;77(6):2827–31.

    Article  CAS  PubMed  Google Scholar 

  86. Minett GM, Duffield R, Marino FE, Portus M. Volume-dependent response of precooling for intermittent-sprint exercise in the heat. Med Sci Sports Exerc. 2011;43(9):1760–9.

    Article  PubMed  Google Scholar 

  87. Minett GM, Duffield R, Marino FE, Portus M. Duration-dependant response of mixed-method pre-cooling for intermittent-sprint exercise in the heat. Eur J Appl Physiol. 2012;112(10):3655–66.

    Article  PubMed  Google Scholar 

  88. Minett GM, Duffield R, Kellett A, Portus M. Mixed-method pre-cooling reduces physiological demand without improving performance of medium-fast bowling in the heat. J Sports Sci. 2012;30(9):907–15.

    Article  PubMed  Google Scholar 

  89. Bongers CC, Hopman MT, Eijsvogels TM. Cooling interventions for athletes: an overview of effectiveness, physiological mechanisms, and practical considerations. Temperature (Austin). 2017;4(1):60–78.

    Article  Google Scholar 

  90. Epstein Y, Roberts WO, Golan R, Heled Y, Sorkine P, Halpern P. Sepsis, septic shock, and fatal exertional heat stroke. Curr Sports Med Rep. 2015;14(1):64–9.

    Article  PubMed  Google Scholar 

  91. Rae DE, Knobel GJ, Mann T, Swart J, Tucker R, Noakes TD. Heatstroke during endurance exercise: is there evidence for excessive endothermy? Med Sci Sports Exerc. 2008;40(7):1193–204.

    Article  PubMed  Google Scholar 

  92. Kerr ZY, Casa DJ, Marshall SW, Comstock RD. Epidemiology of exertional heat illness among U.S. high school athletes. Am J Prev Med. 2013;44(1):8–14.

    Article  PubMed  Google Scholar 

  93. Casa DJ, DeMartini JK, Bergeron MF, Csillan D, Eichner ER, Lopez RM, et al. National Athletic Trainers’ association position statement: exertional heat illnesses. J Athl Train. 2015;50(9):986–1000.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Adams WM, Hosokawa Y, Casa DJ. The timing of exertional heat stroke survival starts prior to collapse. Curr Sports Med Rep. 2015;14(4):273–4.

    Article  PubMed  Google Scholar 

  95. Casa DJ, Armstrong LE, Kenny GP, O’Connor FG, Huggins RA. Exertional heat stroke: new concepts regarding cause and care. Curr Sports Med Rep. 2012;11(3):115–23.

    Article  PubMed  Google Scholar 

  96. McDermott BP, Casa DJ, Ganio MS, Lopez RM, Yeargin SW, Armstrong LE, et al. Acute whole-body cooling for exercise-induced hyperthermia: a systematic review. J Athl Train. 2009;44(1):84–93.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Butts CL, Spisla DL, Adams JD, Smith CR, Paulsen KM, Caldwell AR, et al. Effectiveness of ice-sheet cooling following exertional hyperthermia. Mil Med. 2017;182(9):e1951–7.

    Article  PubMed  Google Scholar 

  98. DeMartini JK, Ranalli GF, Casa DJ, Lopez RM, Ganio MS, Stearns RL, et al. Comparison of body cooling methods on physiological and perceptual measures of mildly hyperthermic athletes. J Strength Cond Res. 2011;25(8):2065–74.

    Article  PubMed  Google Scholar 

  99. Armstrong LE, Crago AE, Adams R, Roberts WO, Maresh CM. Whole-body cooling of hyperthermic runners: comparison of two field therapies. Am J Emerg Med. 1996;14(4):355–8.

    Article  CAS  PubMed  Google Scholar 

  100. Lissoway JB, Lipman GS, Grahn DA, Cao VH, Shaheen M, Phan S, et al. Novel application of chemical cold packs for treatment of exercise-induced hyperthermia: a randomized controlled trial. Wilderness Environ Med. 2015;26(2):173–9.

    Article  PubMed  Google Scholar 

  101. Adams EL, Vandermark LW, Pryor JL, Pryor RR, VanScoy RM, Denegar CR, et al. Effects of heat acclimation on hand cooling efficacy following exercise in the heat. J Sports Sci. 2017;35(9):828–34.

    Article  PubMed  Google Scholar 

  102. Adams WM, Hosokawa Y, Adams EL, Belval LN, Huggins RA, Casa DJ. Reduction in body temperature using hand cooling versus passive rest after exercise in the heat. J Sci Med Sport. 2016;19(11):936–40.

    Article  PubMed  Google Scholar 

  103. Grahn DA, Dillon JL, Heller HC. Heat loss through the glabrous skin surfaces of heavily insulated, heat-stressed individuals. J Biomech Eng. 2009;131(7):071005.

    Article  CAS  PubMed  Google Scholar 

  104. Hostler D, Reis SE, Bednez JC, Kerin S, Suyama J. Comparison of active cooling devices with passive cooling for rehabilitation of firefighters performing exercise in thermal protective clothing: a report from the Fireground rehab evaluation (FIRE) trial. Prehosp Emerg Care. 2010;14(3):300–9.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Kuennen MR, Gillum TL, Amorim FT, Kwon YS, Schneider SM. Palm cooling to reduce heat strain in subjects during simulated armoured vehicle transport. Eur J Appl Physiol. 2010;108(6):1217–23.

    Article  PubMed  Google Scholar 

  106. Friesen BJ, Carter MR, Poirier MP, Kenny GP. Water immersion in the treatment of exertional hyperthermia: physical determinants. Med Sci Sports Exerc. 2014;46(9):1727–35.

    Article  PubMed  Google Scholar 

  107. Proulx CI, Ducharme MB, Kenny GP. Effect of water temperature on cooling efficiency during hyperthermia in humans. J Appl Physiol (1985). 2003;94(4):1317–23.

    Article  CAS  Google Scholar 

  108. Tan PM, Teo EY, Ali NB, Ang BC, Iskandar I, Law LY, et al. Evaluation of various cooling systems after exercise-induced hyperthermia. J Athl Train. 2017;52(2):108–16.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Taylor NA, Caldwell JN, Van den Heuvel AM, Patterson MJ. To cool, but not too cool: that is the question--immersion cooling for hyperthermia. Med Sci Sports Exerc. 2008;40(11):1962–9.

    Article  PubMed  Google Scholar 

  110. Hosokawa Y, Adams WM, Belval LN, Vandermark LW, Casa DJ. Tarp-assisted cooling as a method of whole-body cooling in hyperthermic individuals. Ann Emerg Med. 2017;69(3):347–52.

    Article  PubMed  Google Scholar 

  111. Luhring KE, Butts CL, Smith CR, Bonacci JA, Ylanan RC, Ganio MS, et al. Cooling effectiveness of a modified cold-water immersion method after exercise-induced hyperthermia. J Athl Train. 2016;51(11):946–51.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Proulx CI, Ducharme MB, Kenny GP. Safe cooling limits from exercise-induced hyperthermia. Eur J Appl Physiol. 2006;96(4):434–45.

    Article  CAS  PubMed  Google Scholar 

  113. Mazerolle SM, Scruggs IC, Casa DJ, Burton LJ, McDermott BP, Armstrong LE, et al. Current knowledge, attitudes, and practices of certified athletic trainers regarding recognition and treatment of exertional heat stroke. J Athl Train. 2010;45(2):170–80.

    Article  PubMed  PubMed Central  Google Scholar 

  114. DeMartini JK, Casa DJ, Stearns R, Belval L, Crago A, Davis R, et al. Effectiveness of cold water immersion in the treatment of exertional heat stroke at the Falmouth road race. Med Sci Sports Exerc. 2015;47(2):240–5.

    Article  PubMed  Google Scholar 

  115. Maroni T, Dawson B, Barnett K, Guelfi K, Brade C, Naylor L, et al. Effectiveness of hand cooling and a cooling jacket on post-exercise cooling rates in hyperthermic athletes. Eur J Sport Sci. 2018;18(4):1–9.

    Article  Google Scholar 

  116. Casa DJ, McDermott BP, Lee EC, Yeargin SW, Armstrong LE, Maresh CM. Cold water immersion: the gold standard for exertional heatstroke treatment. Exerc Sport Sci Rev. 2007;35(3):141–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Tyler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tyler, C.J. (2019). Heat-Stress Exercise and Cooling. In: Périard, J., Racinais, S. (eds) Heat Stress in Sport and Exercise. Springer, Cham. https://doi.org/10.1007/978-3-319-93515-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93515-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93514-0

  • Online ISBN: 978-3-319-93515-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics