Skip to main content

Soil Microorganisms

  • Chapter
  • First Online:
Advances in Plant Ecophysiology Techniques

Abstract

Soils are discontinuous and heterogeneous ecosystems, with properties determined by environmental factors (i.e. climate, parent material, organisms and time factor). Different soils reflect the impact of the various factors involved in their genesis and, as their physicochemical characteristics shift in different axes (surface and subsurface horizons), variability exists from site to site, and within a given site varies in the range of micro niches. These peculiar characteristics convert/transform soils into a composite of very diverse ecosystems making its study very challenging, since very diverse communities may coexist in a very small scale of the same sample. Soil organisms include macro/megafauna, mesofauna, microfauna/flora, and although comprising less than 1% of the total mass of a soil, they play vital functional roles in supporting the soil ecosystem. This chapter presents different approaches to structurally and functionally characterize key soil microorganisms, namely bacteria, archaea, plant growth promoting bacteria, arbuscular mycorrhizas and nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul-Baki AA, Anderson JD (1973) Vigour determination in soya bean seed by multiple criteria. Crop Sci 13:630–633

    Article  Google Scholar 

  • Abrantes IM de O, de MMMN, Paiva IMP de FR, Santos MSN de A (1976) Análise nematológica de solos e plantas. Ciência Biológica 1:139–155

    Google Scholar 

  • Ahmad I, Ahmad F, Pichtel J (2011) Microbes and microbial technology: agricultural and environmental applications. Microbes Microb Technol Agric Environ Appl:1–516. https://doi.org/10.1007/978-1-4419-7931-5

  • Alori ET, Glick BR, Babalola OO (2017) Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front Microbiol 8:971. https://doi.org/10.3389/fmicb.2017.00971.eCollection2017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnow E (1937) Colorimetric determination of the components of 3,4-dihydroxyphenylalanine-tyrosine mixtures. J Biol Chem 118:531–537

    CAS  Google Scholar 

  • Atkin CL, Neilands JB, Phaff HJ (1970) Rhodotorulic acid from species of Leucosporidium, Rhodosporidium, Rhodotorula, Sporidiobolus, and Sporobolomyces, and a new alanine-containing ferrichrome from Cryptococcus melibiosum. J Bacteriol 103:722–733

    PubMed  PubMed Central  CAS  Google Scholar 

  • Barker KR (1985) Sampling nematode communities. In: Sasser JN, Carter JN, Carter CC (eds) An advanced treatise on Meloidogyne. Raleigh, North Carolina USA, A Cooperative Publication of the department of Plant Pathology and the United States Agency For International development, North Carolina State University Graphics, Vol. II, pp 3–17

    Google Scholar 

  • Beck L, Römbke J, Breure AM, Mulder C (2005) Considerations for the use of soil ecological classification and assessment concepts in soil protection. Ecotoxicol Environ Safe 62(2 SPEC. ISS):189–200

    Article  CAS  Google Scholar 

  • Belimov AA, Dodd IC, Hontzeas N et al (2009) Rhizosphere bacteria containing 1-aminocyclopropane-1-carboxylate deaminase increase yield of plants grown in drying soil via both local and systemic hormone signalling. New Phytol 181:413–423

    Article  PubMed  CAS  Google Scholar 

  • Berlec A (2012) Novel techniques and findings in the study of plant microbiota: search for plant probiotics. Plant Sci 193–194:96–102

    Article  PubMed  CAS  Google Scholar 

  • Birtel J, Walser J-C, Pichon S, Bürgmann H, Matthews B (2015) Estimating bacterial diversity for ecological studies: methods, metrics, and assumptions. PLoS One 10:e0125356. https://doi.org/10.1371/journal.pone.0125356

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Blaser MJ, Cardon ZG, Cho MK, Dangl JL, Donohue TJ, Green JL, Knight R, Maxon ME, Northen TR, Pollard KS, Brodie EL (2016) Toward a predictive understanding of earth’ s microbiomes to address 21st century challenges. Am Soc Microbiol 7:1–16. https://doi.org/10.1128/mBio.00714-16

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bric JM, Bostock RM, Silversone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilization on a nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    PubMed  PubMed Central  CAS  Google Scholar 

  • Brussaard L (2012) Ecosystem services provided by the soil biota. In: Wall DH, Bardgett RD, Behan-Pelletier V et al (eds) Soil ecology and ecosystem services. Oxford University Press, Oxford, pp 45–58

    Chapter  Google Scholar 

  • Byrd DW Jr, Kirkpatrick T, Barker KR (1983) An improved technique for clearing and staining plant tissue for detection of nematodes. J Nematol 15:142–143

    Google Scholar 

  • Cappuccino JC, Sherman N (1992) Microbiology: a laboratory manual, 3rd edn. Benjamin/cummings Pub. Co, New York, pp 125–179

    Google Scholar 

  • Dalpé Y, Séguin SM (2013) Microwave-assisted technology for the clearing and staining of arbuscular mycorrhizal fungi in roots. Mycorrhiza 23:333–340

    Article  PubMed  Google Scholar 

  • de Castro AP, Gr F, Franco OL (2014) Insights into novel antimicrobial compounds and antibiotic resistance genes from soil metagenomes. Front Microbiol 5:1–9. https://doi.org/10.3389/fmicb.2014.00489

    Article  CAS  Google Scholar 

  • Delmont TO, Robe P, Cecillon S et al (2011) Accessing the soil metagenome for studies of microbial diversity. Appl Environ Microbiol 77:1315–1324

    Article  PubMed  CAS  Google Scholar 

  • Delmont TO, Eren AM, Maccario L, Prestat E, Esen ÖC, Pelletier E, Le Paslier D, Simonet P, Vogel TM (2015) Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics. Front Microbiol 6:358

    PubMed  PubMed Central  Google Scholar 

  • Dolinšek J, Goldschmidt F, Johnson DR (2016) Synthetic microbial ecology and the dynamic interplay between microbial genotypes. FEMS Microbiol Rev 40:961–979

    Article  PubMed  CAS  Google Scholar 

  • Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–601

    PubMed  PubMed Central  CAS  Google Scholar 

  • Esser RP (n.d.) What are nematodes? Accessed 7th January 2018, http://www.ontaweb.org/photosandlinks/whatarenematodes/. This article was prepared as an introduction to nematodes, particularly plant-parasitic nematodes. Websites listed on the ONTA homepage may be consulted for more advanced information on plant-parasitic nematodes

  • European Commission (2006) Communication from the Commission to the Council, the European Parliament, the Economic and Social Committee and the Committee of the Regions. Thematic Strategy for Soil Protection. COM(2006)231 final. Brussels

    Google Scholar 

  • Fakruddin M, Mannan KS, Bin M (2013) Methods for analyzing diversity of microbial communities in natural environments. Ceylon J Sci (Biological Sci) 42:19–33

    Article  Google Scholar 

  • Ferrer M, Golyshina O, Beloqui A, Golyshin PN (2007) Mining enzymes from extreme environments. Curr Opin Microbiol 10:207–214

    Article  PubMed  CAS  Google Scholar 

  • Fiske CH, Subbarow Y (1925) A colorimetric determination of phosphorus. J Biol Chem 66:375–400

    CAS  Google Scholar 

  • Frostegård A, Courtois S, Ramisse V, Clerc S, Bernillon D, Le Gall F, Jeannin P, Nesme X, Simonet P (1999) Quantification of bias related to the extraction of DNA directly from soils. Appl Environ Microbiol 65:5409–5420

    PubMed  PubMed Central  Google Scholar 

  • Ghannoum M (2016) Cooperative evolutionary strategy between the bacteriome and mycobiome. mBio 15, 7(6). https://doi.org/10.1128/mBio.01951-16

  • Gkorezis P, Daghio M, Franzetti A, Van Hamme JD, Sillen W, Vangronsveld J (2016) The interaction between plants and Bacteria in the remediation of petroleum hydrocarbons: an environmental perspective. Front Microbiol 7:1–27

    Article  Google Scholar 

  • Glick B (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:1–15

    Article  CAS  Google Scholar 

  • Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351

    Article  PubMed  CAS  Google Scholar 

  • Hahn AS, Konwar KM, Louca S, Hanson NW, Hallam SJ (2016) The information science of microbial ecology. Curr Opin Microbiol 31:209–216

    Article  PubMed  Google Scholar 

  • Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM (1998) Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol 5:R245–R249

    Article  PubMed  CAS  Google Scholar 

  • Hawver LA, Giulietti JM, Baleja JD, Ng W-L (2016) Quorum sensing coordinates cooperative expression of pyruvate metabolism genes to maintain a sustainable environment for population stability. MBio 7:e01863-16

    Google Scholar 

  • Heaven MW, Benheim D (2016) Soil microbial metabolomics. Beale DJ, Kouremenos KA, Palombo EA, Microbial metabolomics: applications in clinical, environmental, and industrial microbiology. Springer International Publishing, Cham, pp 147–198

    Chapter  Google Scholar 

  • Hiraoka S, Yang C, Iwasaki W (2016) Metagenomics and bioinformatics in microbial ecology: current status and beyond. Microbes Environ 31:204–212

    Article  PubMed  PubMed Central  Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agr Biol Chem 42:1825–1831

    CAS  Google Scholar 

  • ISTA (1966) International rules for seed testing. Proc Int Seed Test Assoc 31:1–152

    Google Scholar 

  • Jones OAH, Sdepanian S, Lofts S, Svendsen C, Spurgeon DJ, Maguire ML, Griffin JL (2014) Metabolomic analysis of soil communities can be used for pollution assessment. Environ Toxicol Chem 33:61–64

    Article  PubMed  CAS  Google Scholar 

  • Kang HS (2016) Phylogeny-guided (meta)genome mining approach for the targeted discovery of new microbial natural products. J Ind Microbiol Biotechnol 44:285–293

    Article  PubMed  CAS  Google Scholar 

  • Keisam S, Romi W, Ahmed G, Jeyaram K (2016) Quantifying the biases in metagenome mining for realistic assessment of microbial ecology of naturally fermented foods. Sci Rep 6:34155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim ES, Liu Y, Kim J-B, Chang I, Choi J (2015) Biological fixed film. Water Environ Res 87:974–999

    Article  PubMed  CAS  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–505

    Article  Google Scholar 

  • Krakat N, Anjum R, Demirel B, Schröder P (2016) Methodological flaws introduce strong bias into molecular analysis of microbial populations. J Appl Microbiol 49

    Google Scholar 

  • Krause S, Le Roux X, Niklaus PA, Van Bodegom PM, Lennon JT, Bertilsson S, Grossart HP, Philippot L, Bodelier PLE (2014) Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Front Microbiol 5:1–10

    Article  Google Scholar 

  • Krueger R, McSorley R (2014) Nematode management in organic agriculture. http://edis.ifas.ufl.edu/. Accessed in 7th January 2018. This document is ENY-058 (NG047), one of a series of the Entomology & Nematology Department, UF/IFAS Extension. First published: January 2008. Reviewed June 2014. For more publications related to horticulture/agriculture, please visit the EDIS Website at http://edis.ifas.ufl.edu/

  • Levy SE, Myers RM (2016) Advancements in next-generation sequencing. Annu Rev Genomics Hum Genet 17:95–115

    Article  PubMed  CAS  Google Scholar 

  • Lim NYN, Roco CA, Frostegård Å (2016) Transparent DNA/RNA co-extraction workflow protocol suitable for inhibitor-rich environmental samples that focuses on complete DNA removal for transcriptomic analyses. Front Microbiol 7:1–15

    Google Scholar 

  • Ling LL, Schneider T, Peoples AJ, Spoering AL1, Engels I, Conlon BP, Mueller A, Schäberle TF, Hughes DE, Epstein S, Jones M, Lazarides L, Steadman VA, Cohen DR, Felix CR, Fetterman KA, Millett WP, Nitti AG, Zullo AM, Chen C, Lewis K (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lipiec J, Frac M, Brzezinska M, Turski M, Oszust K (2016) Linking microbial enzymatic activities and functional diversity of soil around earthworm burrows and casts. Front Microbiol 7:1–9

    Article  Google Scholar 

  • Lok C (2015) Mining the microbial dark matter. Nature 522:270–273

    Article  PubMed  CAS  Google Scholar 

  • Lorck H (1948) Production of hydrocyanic acid by bacteria. Physiol Plant 1:142–146

    Article  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Freitas H (2009) Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere 75:719–725

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Rajkumar M, Luo YM, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants – effects on plant growth and Ni uptake. J Hazard Mater 196:230–237

    Article  CAS  Google Scholar 

  • Maherali H, Oberle B, Stevens PF, Cornwell WK, McGlinn DJ (2016) Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. Am Nat 188:E113–E125

    Article  PubMed  Google Scholar 

  • Mahmoudi N, Slater GF, Fulthorpe RR (2011) Comparison of commercial DNA extraction kits for isolation and purification of bacterial and eukaryotic DNA from PAH-contaminated soils. Can J Microbiol 57:623–628

    Article  PubMed  CAS  Google Scholar 

  • Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem 6:287–303

    Article  CAS  Google Scholar 

  • Masson-Boivin C, Sachs JL (2017) Symbiotic nitrogen fixation by rhizobia-the roots of a success story. Curr Opin Plant Biol 44:7–15

    Article  PubMed  CAS  Google Scholar 

  • McSorley R (2016) Soil-inhabiting nematodes, Phylum Nematoda. http://edis.ifas.ufl.edu. Accessed in 7th January 2018. This document is EENY-012, one of a series of the Entomology and Nematology Department, UF/IFAS Extension. Original publication date July 1997. Revised July 2007. Reviewed April 2016. Visit the EDIS website at http://edis.ifas.ufl.edu

  • Mekete T, Crow WT (2015) Sampling instructions for nematode assays. http://edis.ifas.ufl.edu/. Accessed in 7th January 2018. This document is ENY-027 (SR011), is one of a series of the entomology and nematology department, UF/IFAS extension. Published September 2001. Revised March 2007, March 2012, and July 2015. Please visit the EDIS website at http://edis.ifas.ufl.edu/

  • Mendes LW, Tsai SM, Navarrete AA, de Hollander M, van Veen JA, Kuramae EE (2015) Soil-borne microbiome: linking diversity to function. Microb Ecol 70:255–265

    Article  PubMed  CAS  Google Scholar 

  • Mendes S, Azul AM, Castro P, Röembke J, Sousa JP (2016) Chapter 16: Protecting soil biodiversity and soil functions: current status and future challenges. In: Castro P, Azeiteiro UM, Bacelar Nicolau P, Leal Filho W, Azul AM (eds) Biodiversity and education for sustainable development, World sustainability series. Springer, Cham

    Google Scholar 

  • Morris CE, Bardin M, Berge O, Frey-Klett P, Fromin N, Girardin H, Guinebretiere MH, Lebaron P, Thiery JM, Troussellier M (2002) Microbial biodiversity: approaches to experimental design and hypothesis testing in primary scientific literature from 1975 to 1999. Microbiol Mol Biol Rev 66:592–616

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller T, Ruppel S (2014) Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol 87:2–17

    Article  PubMed  CAS  Google Scholar 

  • Nemergut D, Shade A, Violle C (2014) When, where and how does microbial community composition matter? Front Microbiol 5:2012–2014

    Article  Google Scholar 

  • Oliveira RS, Ma Y, Rocha I, Carvalho MF, Vosátka M, Freitas H (2016) Arbuscular mycorrhizal fungi are an alternative to the application of chemical fertilizer in the production of the medicinal and aromatic plant Coriandrum sativum L. J Toxicol Environ Health A 79:320–328

    Article  PubMed  CAS  Google Scholar 

  • Orgiazzi A, Bardgett RD, Barrios E, Behan-Pelletier V, MJI B, Chotte JL, De Deyn GB, Eggleton P, Fierer N, Fraser T, Hedlund K, Jeffery S, Johnson NC, Jones A et al (eds) (2016) Global soil biodiversity atlas. European Commission, Publications Office of the European Union, Luxembourg 176 pp

    Google Scholar 

  • Pajak M, Błońska E, Frac M, Oszust K (2016) Functional diversity and microbial activity of forest soils that are heavily contaminated by lead and zinc. Water Air Soil Pollut 227:348

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pajares S, Bohannan BJ (2016) Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front Microbiol 7:1045

    PubMed  PubMed Central  Google Scholar 

  • Papadopoulou A, Taberlet P, Zinger L (2015) Metagenome skimming for phylogenetic community ecology: a new era in biodiversity research. Mol Ecol 24:3515–3517

    Article  PubMed  Google Scholar 

  • Pepper IL, Gerba CP (2009) Environmental sample collection and processing. Elsevier Inc. doi:https://doi.org/10.1016/B978-0-12-394626-3.00008-9

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Prosser JI (2015) Dispersing misconceptions and identifying opportunities for the use of “omics” in soil microbial ecology. Nat Rev Microbiol 13:439–446

    Article  PubMed  CAS  Google Scholar 

  • Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng JF, Darling A, Malfatti S, Swan BK, Gies EA, Dodsworth JA, Hedlund BP, Tsiamis G (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437

    Article  PubMed  CAS  Google Scholar 

  • Saia S, Ruisi P, Fileccia V, Di Miceli G, Amato G, Martinelli F (2015) Metabolomics suggests that soil inoculation with arbuscular mycorrhizal fungi decreased free amino acid content in roots of durum wheat grown under N-limited, P-rich field conditions. PLoS One 10:1–15

    Article  CAS  Google Scholar 

  • Saleh SS, Glick BR (2001) Involvement of gasS and pros in enhancement of the plant growth-promoting capabilities of Enterobacter cloacae CAL2 and UW4. Can J Microbiol 47:698–705

    Article  PubMed  CAS  Google Scholar 

  • Schloss PD, Jenior ML, Koumpouras CC, Westcott SL, Highlander SK (2015) Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. Peer J 4:e1869

    Article  CAS  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160:47–56

    Article  PubMed  CAS  Google Scholar 

  • Sharpton TJ (2014) An introduction to the analysis of shotgun metagenomic data. Front Plant Sci 5:209

    Article  PubMed  PubMed Central  Google Scholar 

  • Siggins A, Gunnigle E, Abram F (2012) Exploring mixed microbial community functioning: recent advances in metaproteomics. FEMS Microbiol Ecol 80:265–280

    Article  PubMed  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Solden L, Lloyd K, Wrighton K (2016) The bright side of microbial dark matter: lessons learned from the uncultivated majority. Curr Opin Microbiol 31:217–226

    Article  PubMed  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  PubMed  CAS  Google Scholar 

  • Stubbendieck RM, Vargas-Bautista C, Straight PD (2016) Bacterial communities: interactions to scale. Front Microbiol 7:1–19

    Article  Google Scholar 

  • Sun X, Tang M (2012) Comparison of four routinely used methods for assessing root colonization by arbuscular mycorrhizal fungi. Botany 90:1073–1083

    Article  Google Scholar 

  • Tremblay J, Singh K, Fern A, Kirton ES, He S, Woyke T, Lee J, Chen F, Dangl JL, Tringe SG (2015) Primer and platform effects on 16S rRNA tag sequencing. Front Microbiol 6:1–15

    Google Scholar 

  • van Bezooijen J (2006) Sampling. In: Bezooijen J van (Ed), Methods and techniques for nematology. Revised version 2006 2–10

    Google Scholar 

  • van Elsas JD, Boersma FGH (2011) A review of molecular methods to study the microbiota of soil and the mycosphere. Eur J Soil Biol 47:77–87

    Article  Google Scholar 

  • Varga S (2015) On the importance of details in arbuscular mycorrhizal research. Appl Soil Ecol 87:87–90

    Article  Google Scholar 

  • Vierheilig H, Schweiger P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant 125: 393–404

    Google Scholar 

  • Violle C, Reich PB, Pacala SW (2014) The emergence and promise of functional biogeography. Proc Natl Acad Sci 111:13690–13696

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Whitehead AG, Hemming JR (1965) A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Ann Appl Biol 55:25–28

    Article  Google Scholar 

  • Wu D, Hugenholtz P, Mavromatis K et al (2009) A phylogeny-driven genomic encyclopedia of Bacteria and archaea. Nature 462:1056–1060

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Z, Hansen MA, Hansen LH, Jacquiod S, Sørensen SJ (2014) Bioinformatic approaches reveal metagenomic characterization of soil microbial community. PLoS One 9:e93445

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Young JM, Rawlence NJ, Weyrich LS, Cooper A (2014) Limitations and recommendations for successful DNA extraction from forensic soil samples: a review. Sci Justice 54:238–244

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

J. Costa, R.S. Oliveira, Y. Ma acknowledge the support of Fundação para a Ciência e a Tecnologia (FCT) through the research grants SFRH/BPD/112157/2015, SFRH/BPD/85008/2012 and SFRH/BPD/76028/2011, Fundo Social Europeu (FSE) and Programa Operacional do Capital Humano (POCH). I. Tiago acknowledges an Investigator contract reference IF/01061/2014. This work was financed by Portuguese national funds through Programa Operacional Competitividade e Internacionalização (POCI), Project 3599 – Promover a Produção Científica e Desenvolvimento Tecnológico e a Constituição de Redes Temáticas (3599-PPCDT) and Fundo Europeu de Desenvolvimento Regional (FEDER) under Project POCI-01-0145-FEDER-016801 and by FCT under Project PTDC/AGR-TEC/1140/2014. This work was financed by the Interreg Sudoe programme through the European Regional Development Fund under Project PhytoSUDOE – SOE1/P5/E0189. J. Costa and P. Castro acknowledge the project ReNATURE - Valorization of the Natural Endogenous Resources of the Centro Region (Centro 2020, Centro-01-0145-FEDER-000007).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Costa, J. et al. (2018). Soil Microorganisms. In: Sánchez-Moreiras, A., Reigosa, M. (eds) Advances in Plant Ecophysiology Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-93233-0_27

Download citation

Publish with us

Policies and ethics