Skip to main content

Reconfigurable, Switched-Capacitor Power Converter for IoT

  • Chapter
  • First Online:
The IoT Physical Layer

Abstract

This chapter introduces an efficient reconfigurable, multiple voltage gain switched-capacitor DC–DC buck converter as part of a power management unit for wearable IoTs. The switched-capacitor converter has an input voltage of 0.6–1.2 V generated from an energy harvesting source. The switched-capacitor converter utilizes pulse frequency modulation to generate multiple regulated output voltage levels, namely 1, 0.8 and 0.6 V based on two reconfigurable bits over a wide range of load currents from 10 \(\upmu \)A to 800 \(\upmu \)A. The switched-capacitor converter is designed and fabricated in 65 nm low-power CMOS technology and occupies an area of 0.493 mm\(^2\). The design utilizes a stack of MIM and MOS capacitances to optimize the circuit area and efficiency. The measured peak efficiency is 80\(\%\) at a load current of 800 \(\upmu \)A and regulated load voltage of 1 V.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Lu, V. Raghunathan, K. Roy, Efficient design of micro-scale energy harvesting systems. IEEE J. Emerg. Sel. Top. Circuits Syst. 1(3), 254–266 (2011)

    Article  Google Scholar 

  2. Y. Ramadass, A. Chandrakasan, A battery-less thermoelectric energy harvesting interface circuit with 35 mv startup voltage. IEEE J. Solid-State Circuits 46(1), 333–341 (2011)

    Article  Google Scholar 

  3. P. Luo, S. Zhen, J. Wang, K. Yang, P. Liao, X. Zhu, Digital assistant power integrated technologies for pmu in scaling cmos process. IEEE Trans. Power Electron. 29(7), 3798–3807 (2014)

    Article  Google Scholar 

  4. L.G. Salem, P.P. Mercier, An 85%-efficiency fully integrated 15-ratio recursive switched-capacitor dc–dc converter with 0.1-to-2.2 v output voltage range, in ISSCC. (IEEE, 2014), pp. 88–89

    Google Scholar 

  5. J. Pyo, Y. Shin et al., 20 nm high-k metal-gate heterogeneous 64b quad-core cpus and hexa-core gpu for high-performance and energy-efficient mobile application processor, in ISSCC. (IEEE, 2015), pp. 1–3

    Google Scholar 

  6. M. Alioto, Ultra-low power vlsi circuit design demystified and explained. Trans. Circuits Syst. I 59(1), 3–29 (2012)

    Article  MathSciNet  Google Scholar 

  7. T. Instruments, A usb-enabled system-on-chip solution for 2.4 ghz ieee 802.15. 4 and zigbee applications (2009)

    Google Scholar 

  8. S. STM32W108HB, High-performance, 802.15. 4 wireless system-on-chip, Preliminary data. Doc ID, vol. 16252

    Google Scholar 

  9. F. Semiconductor, Mc1322x technical data, rev. 1.3, (2010)

    Google Scholar 

  10. B. Mohammad, J. Abraham, A reduced voltage swing circuit using a single supply to enable lower voltage operation for sram-based memory. Microelectron. J. 43(2), 110–118 (2012)

    Article  Google Scholar 

  11. P. Hazucha, T. Karnik, B.A. Bloechel, C. Parsons, D. Finan, S. Borkar, Area-efficient linear regulator with ultra-fast load regulation. IEEE J. Solid-State Circuits 40(4), 933–940 (2005)

    Article  Google Scholar 

  12. C.-W. Chen, A. Fayed, A low-power dual-frequency simo buck converter topology with fully-integrated outputs and fast dynamic operation in 45 nm cmos. IEEE J. Solid-State Circuits 50(9), 2161–2173 (2015)

    Article  Google Scholar 

  13. D. Lu, Y. Qian, Z. Hong, 4.3 an 87%-peak-efficiency dvs-capable single-inductor 4-output dc-dc buck converter with ripple-based adaptive off-time control, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). (IEEE, 2014), pp. 82–83

    Google Scholar 

  14. C. Tao, A.A. Fayed, A low-noise pfm-controlled buck converter for low-power applications. IEEE Trans. Circuits Syst. I Regul. Pap. 59(12), 3071–3080 (2012)

    Article  MathSciNet  Google Scholar 

  15. M. Belloni, E. Bonizzoni, E. Kiseliovas, P. Malcovati, F. Maloberti, T. Peltola, T. Teppo, A 4-output single-inductor dc-dc buck converter with self-boosted switch drivers and 1.2 a total output current, in IEEE International Solid-State Circuits Conference, ISSCC 2008. Digest of Technical Papers. (IEEE, 2008), pp. 444–626

    Google Scholar 

  16. W. Kim, D.M. Brooks, G.-Y. Wei, A fully-integrated 3-level dc, dc converter for nanosecond-scale dvs with fast shunt regulation, in 2011 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). (IEEE, 2011), pp. 268–270

    Google Scholar 

  17. J. Wibben, R. Harjani, A high-efficiency dc-dc converter using 2 nh integrated inductors. IEEE J. Solid-State Circuits 43(4), 844–854 (2008)

    Article  Google Scholar 

  18. W. Fu, A. Fayed, A self-regulated 588 mhz buck regulator with on-chip passives and circuit stuffing in 65 nm, in 2014 IEEE 57th International Midwest Symposium on Circuits and Systems (MWSCAS). (IEEE, 2014), pp. 338–341

    Google Scholar 

  19. V. Ng, S. Sanders, A 92%-efficiency wide-input-voltage-range switched-capacitor dc–dc converter, in 2012 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC). (IEEE, 2012), pp. 282–284

    Google Scholar 

  20. C. Tse, S. Wong, M. Chow, On lossless switched-capacitor power converters. IEEE Trans. Power Electron. 10(3), 286–291 (1995)

    Article  Google Scholar 

  21. D. Kilani, B. Mohammad, H. Saleh, M. Ismail, Ldo regulator versus switched inductor dc–dc converter, in 2014 21st IEEE International Conference on Electronics, Circuits and Systems (ICECS). (IEEE, 2014), pp. 638–641

    Google Scholar 

  22. D. Kilani, B. Mohammad, H. Saleh, M. Ismail, Switched capacitor dc–dc converter for ultra-low power applications, in IEEE International Conference on Electronics, Circuits, and Systems, vol. 2 (2014)

    Google Scholar 

  23. D. Ma, R. Bondade, in Reconfigurable Switched-Capacitor Power Converters (Springer, New York, 2013)

    Google Scholar 

  24. B. Nikolic, V. G. Oklobdzija, V. Stojanovic, W. Jia, J. K.-S. Chiu, M. Ming-Tak Leung, Improved sense-amplifier-based flip-flop: design and measurements. JSSC 35(6), 876–884 (2000)

    Google Scholar 

  25. R.J. Baker, CMOS: Circuit Design, Layout, and Simulation, vol. 1 (Wiley, New York, 2008)

    Book  Google Scholar 

  26. H.-P. Le, S.R. Sanders, E. Alon, Design techniques for fully integrated switched-capacitor dc–dc converters. JSSC 46(9), 2120–2131 (2011)

    Google Scholar 

  27. M.D. Seeman, S.R. Sanders, J.M. Rabaey, An ultra-low-power power management ic for energy-scavenged wireless sensor nodes, in Power Electronics Specialists Conference. (IEEE, 2008), pp. 925–931

    Google Scholar 

  28. Y.K. Ramadass, A.P. Chandrakasan, Voltage scalable switched capacitor dc–dc converter for ultra-low-power on-chip applications, in PESC. (IEEE, 2007), pp. 2353–2359

    Google Scholar 

  29. Y. Ramadass, A. Fayed, B. Haroun, A. Chandrakasan, A 0.16mm2 completely on-chip switched-capacitor dc–dc converter using digital capacitance modulation for ldo replacement in 45 nm cmos, in ISSCC. (2010), pp. 208–209

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the Semiconductor Research Corporation (SRC) under the Abu Dhabi SRC Center of Excellence on Energy-Efficient Electronic Systems (\(ACE^{4}S\)), Contract 2013 HJ2440, with funding from the Mubadala Development Company, Abu Dhabi, UAE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baker Mohammad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kilani, D., Alhawari, M., Mohammad, B., Saleh, H., Ismail, M. (2019). Reconfigurable, Switched-Capacitor Power Converter for IoT. In: Elfadel, I., Ismail, M. (eds) The IoT Physical Layer. Springer, Cham. https://doi.org/10.1007/978-3-319-93100-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93100-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93099-2

  • Online ISBN: 978-3-319-93100-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics