Skip to main content

Diagnosis of Non-Small Cell Lung Cancer Using Phylogenetic Diversity in Radiomics Context

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2018)

Abstract

Lung cancer is the most common type of cancer and has the highest mortality rate in the world. The automatic process for the diagnosis by computer vision systems, through medical images, provides an interpretation regarding the pathology. The idea of this work is to use the texture features using phylogenetic diversity indexes, to classify Non-Small Cell Lung Cancer. This work presents the development of texture descriptors based on phylogenetic diversity indices for characterization of the nodule. The tests showed promising results of 98.47% accuracy, a Kappa index of 0.979 and an ROC of 0.999.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Setio, A.A.A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., van Riel, S.J., Wille, M.M.W., Naqibullah, M., Sánchez, C.I., van Ginneken, B.: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35(5), 1160–1169 (2016)

    Article  Google Scholar 

  2. Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2015)

    Article  Google Scholar 

  3. Kumar, D., Chung, A.G., Shaifee, M.J., Khalvati, F., Haider, M.A., Wong, A.: Discovery radiomics for pathologically-proven computed tomography lung cancer prediction. In: Karray, F., Campilho, A., Cheriet, F. (eds.) ICIAR 2017. LNCS, vol. 10317, pp. 54–62. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59876-5_7

    Chapter  Google Scholar 

  4. van Timmeren, J.E., Leijenaar, R.T., van Elmpt, W., Reymen, B., Oberije, C., Monshouwer, R., Bussink, J., Brink, C., Hansen, O., Lambin, P.: Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images. Radiother. Oncol. 123(3), 363–369 (2017)

    Article  Google Scholar 

  5. Coroller, T.P., Agrawal, V., Narayan, V., Hou, Y., Grossmann, P., Lee, S.W., Mak, R.H., Aerts, H.J.: Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother. Oncol. 119(3), 480–486 (2016)

    Article  Google Scholar 

  6. Huynh, E., Coroller, T.P., Narayan, V., Agrawal, V., Hou, Y., Romano, J., Franco, I., Mak, R.H., Aerts, H.J.: CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. Radiother. Oncol. 120(2), 258–266 (2016)

    Article  Google Scholar 

  7. de Carvalho Filho, A.O., Silva, A.C., de Paiva, A.C., Nunes, R.A., Gattass, M.: Computer-aided diagnosis of lung nodules in computed tomography by using phylogenetic diversity, genetic algorithm, and SVM. J. Digit. Imaging 30(6), 812–822 (2017)

    Article  Google Scholar 

  8. Dean, J.: Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners. John Wiley & Sons, Hoboken (2014)

    Book  Google Scholar 

  9. Aerts, H., Rios Velazquez, E., Leijenaar, R.T., Parmar, C., Grossmann, P., Carvalho, S., Lambin, P.: Data from NSCLC-radiomics. The cancer imaging archive (2015)

    Google Scholar 

  10. Izsák, J., Papp, L.: A link between ecological diversity indices and measures of biodiversity. Ecol. Model. 130(1–3), 151–156 (2000)

    Article  Google Scholar 

  11. Clarke, K., Warwick, R.: Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edn. (1994)

    Google Scholar 

  12. Pienkowski, M., Watkinson, A., Kerby, G., Clarke, K., Warwick, R.: A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35(4), 523–531 (1998)

    Article  Google Scholar 

  13. Schweiger, O., Klotz, S., Durka, W., Kühn, I.: A comparative test of phylogenetic diversity indices. Oecologia 157(3), 485–495 (2008)

    Article  Google Scholar 

  14. Faith, D.P.: Phylogenetic pattern and the quantification of organismal biodiversity. Phil. Trans. R. Soc. Lond. B 345(1311), 45–58 (1994)

    Article  Google Scholar 

  15. Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino C. dos S. Neto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neto, A.C.d.S. et al. (2018). Diagnosis of Non-Small Cell Lung Cancer Using Phylogenetic Diversity in Radiomics Context. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93000-8_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92999-6

  • Online ISBN: 978-3-319-93000-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics