Skip to main content

Systems Biology of Genome Structure and Dynamics

  • Chapter
  • First Online:
Systems Biology

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

Our view of the packed genome inside a nucleus has evolved greatly over the past decade. Aided by novel experimental and bioinformatic analysis techniques and detailed computational models, fundamental insights into the structure and dynamics of chromosomes have been gained. This has revealed that genome organisation has an essential role in controlling genome function during normal growth, cellular differentiation, and stress response, showing that, overall, 3D reorganisation is tightly linked to changes in gene expression. Chromatin, which is composed of DNA and a large number of different chromatin-associated proteins and RNAs, is often chemically modified, in patterns that affect gene expression. It has become clear that this highly interconnected system requires computational simulations to gain an understanding of the underlying system-wide mechanisms.

In this review, we describe different modelling approaches that are used to investigate both the linear and spatial arrangement of chromatin. We illustrate how dynamic computer simulations are used to study the mechanisms that control and maintain genome architecture and drive changes in this structure. We focus on models of the dynamics of epigenetic modifications, of protein–DNA interactions, and the polymer dynamics of chromosomes. These approaches provide reliable frameworks to integrate additional biological data; enable accurate, genome-wide predictions; and allow the discovery of new mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alipour E, Marko JF (2012) Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res 40:11202–11212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andrews SS, Addy NJ, Brent R, Arkin AP (2010) Detailed simulations of cell biology with Smoldyn 2.1. PLoS Comput Biol 6:e1000705

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Angel A, Song J, Dean C, Howard M (2011) A polycomb-based switch underlying quantitative epigenetic memory. Nature 476:105–108

    Article  PubMed  CAS  Google Scholar 

  • Babu MM, Janga SC, de Santiago I, Pombo A (2008) Eukaryotic gene regulation in three dimensions and its impact on genome evolution. Curr Opin Genet Dev 18:571–582

    Article  PubMed  CAS  Google Scholar 

  • Benedetti F, Dorier J, Burnier Y, Stasiak A (2014) Models that include supercoiling of topological domains reproduce several known features of interphase chromosomes. Nucleic Acids Res 42:2848–2855

    Article  PubMed  CAS  Google Scholar 

  • Berg OG, von Hippel PH (1985) Diffusion-controlled macromolecular interactions. Annu Rev Biophys Biophys Chem 14:131–160

    Article  PubMed  CAS  Google Scholar 

  • Berg OG, Winter RB, von Hippel PH (1981) Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry 20:6929–6948

    Article  PubMed  CAS  Google Scholar 

  • Berg OG, Winter RB, von Hippel PH (1982) How do genome-regulatory proteins locate their DNA target sites? Trends Biochem Sci 7:52–55

    Article  CAS  Google Scholar 

  • Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    Article  PubMed  CAS  Google Scholar 

  • Berry S, Dean C, Howard M (2017) Slow chromatin dynamics allow polycomb target genes to filter fluctuations in transcription factor activity. Cell Syst 4:445–457.e8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacherjee A, Levy Y (2014a) Search by proteins for their DNA target site: 1. The effect of DNA conformation on protein sliding. Nucleic Acids Res 42:12404–12414

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacherjee A, Levy Y (2014b) Search by proteins for their DNA target site: 2. The effect of DNA conformation on the dynamics of multidomain proteins. Nucleic Acids Res 42:12415–12424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bonev B, Cavalli G (2016) Organization and function of the 3D genome. Nat Rev Genet 17:661–678

    Article  CAS  PubMed  Google Scholar 

  • Brackley CA, Cates ME, Marenduzzo D (2013) Intracellular facilitated diffusion: searchers, crowders, and blockers. Phys Rev Lett 111:108101

    Article  PubMed  CAS  Google Scholar 

  • Brackley CA, Brown JM, Waithe D et al (2016) Predicting the three-dimensional folding of cis-regulatory regions in mammalian genomes using bioinformatic data and polymer models. Genome Biol 17:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Casolari JM, Brown CR, Komili S et al (2004) Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell 117:427–439

    Article  PubMed  CAS  Google Scholar 

  • Cavalli G, Misteli T (2013) Functional implications of genome topology. Nat Struct Mol Biol 20:290–299

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cheng TMK, Heeger S, Chaleil RAG et al (2015) A simple biophysical model emulates budding yeast chromosome condensation. eLIFE 4:e05565

    Google Scholar 

  • Chiariello AM, Annunziatella C, Bianco S et al (2016) Polymer physics of chromosome large-scale 3D organisation. Sci Rep 6:29775

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Das RK, Kolomeisky AB (2010) Facilitated search of proteins on DNA: correlations are important. Phys Chem Chem Phys 12:2999–3004

    Article  PubMed  CAS  Google Scholar 

  • David-Rus D, Mukhopadhyay S, Lebowitz JL, Sengupta AM (2009) Inheritance of epigenetic chromatin silencing. J Theor Biol 258:112–120

    Article  PubMed  CAS  Google Scholar 

  • Dindot SV, Cohen ND (2013) Epigenetic regulation of gene expression: emerging applications for horses. J Equine Vet Sci 33:288–294

    Article  Google Scholar 

  • Dixon JR, Gorkin DU, Ren B (2016) Chromatin domains: the unit of chromosome organization. Mol Cell 62:668–680

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dodd IB, Sneppen K (2011) Barriers and silencers: a theoretical toolkit for control and containment of nucleosome-based epigenetic states. J Mol Biol 414:624–637

    Article  PubMed  CAS  Google Scholar 

  • Dodd IB, Micheelsen MA, Sneppen K, Thon G (2007) Theoretical analysis of epigenetic cell memory by nucleosome modification. Cell 129:813–822

    Article  PubMed  CAS  Google Scholar 

  • Doyle B, Fudenberg G, Imakaev M, Mirny LA (2014) Chromatin loops as allosteric modulators of enhancer-promoter interactions. PLoS Comput Biol 10:e1003867

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Erdel F, Greene EC (2016) Generalized nucleation and looping model for epigenetic memory of histone modifications. Proc Natl Acad Sci U S A 113:E4180–E4189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Finlan LE, Sproul D, Thomson I et al (2008) Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet 4:e1000039

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flavahan WA, Drier Y, Liau BB et al (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–114

    Article  CAS  PubMed  Google Scholar 

  • Foster HA, Bridger JM (2005) The genome and the nucleus: a marriage made by evolution. Genome organisation and nuclear architecture. Chromosoma 114:212–229

    Article  PubMed  Google Scholar 

  • Fudenberg G, ImakaevM LC et al (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15:2038–2049

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Furini S, Barbini P, Domene C (2013) DNA-recognition process described by MD simulations of the lactose repressor protein on a specific and a non-specific DNA sequence. Nucleic Acids Res 41:3963–3972

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ganai N, Sengupta S, Menon GI (2014) Chromosome positioning from activity-based segregation. Nucleic Acids Res 42:4145–4159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giorgetti L, Galupa R, Nora EP et al (2014) Predictive polymer modeling reveals coupled fluctuations in chromosome conformation and transcription. Cell 157:950–963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Golkaram M, Jang J, Hellander S et al (2017) The role of chromatin density in cell population heterogeneity during stem cell differentiation. Sci Rep 7:13307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • GĂłmez-DĂ­az E, Corces VG (2014) Architectural proteins: regulators of 3D genome organization in cell fate. Trends Cell Biol 24:703–711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grewal SIS, Moazed D (2003) Heterochromatin and epigenetic control of gene expression. Science 301:798–802

    Article  CAS  PubMed  Google Scholar 

  • Guidi M, Ruault M, Marbouty M et al (2015) Spatial reorganization of telomeres in long-lived quiescent cells. Genome Biol 16:206

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hathaway NA, Bell O, Hodges C et al (2012) Dynamics and memory of heterochromatin in living cells. Cell 149:1447–1460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heun P, Taddei A, Gasser SM (2001) From snapshots to moving pictures: new perspectives on nuclear organization. Trends Cell Biol 11:519–525

    Article  CAS  PubMed  Google Scholar 

  • Hodges C, Crabtree GR (2012) Dynamics of inherently bounded histone modification domains. Proc Natl Acad Sci U S A 109:13296–13301

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofmann A, Heermann DW (2015) The role of loops on the order of eukaryotes and prokaryotes. FEBS Lett 589:2958–2965

    Article  CAS  PubMed  Google Scholar 

  • Iwahara J, Levy Y (2013) Speed-stability paradox in DNA-scanning by zinc-finger proteins. Transcription 4:58–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33(Suppl):245–254

    Article  CAS  PubMed  Google Scholar 

  • Javierre BM, Burren OS, Wilder SP et al (2016) Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell 167:1369–1384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jerabek H, Heermann DW (2012) Expression-dependent folding of interphase chromatin. PLoS One 7:e37525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jirgensons B (1958) Optical rotation and viscosity of native and denatured proteins. X. Further studies on optical rotatory dispersion. Arch Biochem Biophys 74:57–69

    Article  CAS  PubMed  Google Scholar 

  • Jost D, Carrivain P, Cavalli G, Vaillant C (2014) Modeling epigenome folding: formation and dynamics of topologically associated chromatin domains. Nucleic Acids Res 42:9553–9561

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Koslover EF, Spakowitz AJ (2014) Multiscale dynamics of semiflexible polymers from a universal coarse-graining procedure. Phys Rev E Stat Nonlinear Soft Matter Phys 90:013304

    Article  CAS  Google Scholar 

  • Kouzine F, Sanford S, Elisha-Feil Z, Levens D (2008) The functional response of upstream DNA to dynamic supercoiling in vivo. Nat Struct Mol Biol 15:146–154

    Article  CAS  PubMed  Google Scholar 

  • Kouzine F, Gupta A, Baranello L et al (2013) Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat Struct Mol Biol 20:396–403

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ku WL, Girvan M, Yuan G-C et al (2013) Modeling the dynamics of bivalent histone modifications. PLoS One 8:e77944

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Labrador M, Corces VG (2002) Setting the boundaries of chromatin domains and nuclear organization. Cell 111:151–154

    Article  CAS  PubMed  Google Scholar 

  • LanctĂ´t C, Cheutin T, Cremer M et al (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115

    Article  CAS  PubMed  Google Scholar 

  • Lazar-Stefanita L, Scolari VF, Mercy G et al (2017) Cohesins and condensins orchestrate the 4D dynamics of yeast chromosomes during the cell cycle. EMBO J 36:2684–2697

    Google Scholar 

  • Le TBK, Imakaev MV, Mirny LA, Laub MT (2013) High-resolution mapping of the spatial organization of a bacterial chromosome. Science 342:731–734

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424:147–151

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Cherstvy AG, Metzler R (2017) Facilitated diffusion of transcription factor proteins with anomalous bulk diffusion. J Phys Chem B 121:1284–1289

    Article  CAS  PubMed  Google Scholar 

  • Loi D, Mossa S, Cugliandolo LF (2008) Effective temperature of active matter. Phys Rev E Stat Nonlinear Soft Matter Phys 77:051111

    Article  CAS  Google Scholar 

  • Long HK, Prescott SL, Wysocka J (2016) Ever-changing landscapes: transcriptional enhancers in development and evolution. Cell 167:1170–1187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lupiáñez DG, Kraft K, Heinrich V et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mahmutovic A, Berg OG, Elf J (2015) What matters for lac repressor search in vivo—sliding, hopping, intersegment transfer, crowding on DNA or recognition? Nucleic Acids Res 43:3454–3464

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marklund EG, Mahmutovic A, Berg OG et al (2013) Transcription-factor binding and sliding on DNA studied using micro- and macroscopic models. Proc Natl Acad Sci U S A 110:19796–19801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Micheelsen MA, Mitarai N, Sneppen K, Dodd IB (2010) Theory for the stability and regulation of epigenetic landscapes. Phys Biol 7:026010

    Article  PubMed  CAS  Google Scholar 

  • Misteli T (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science 291:843–847

    Article  PubMed  CAS  Google Scholar 

  • Mukhopadhyay S, Nagaraj VH, Sengupta AM (2010) Locus dependence in epigenetic chromatin silencing. Biosystems 102:49–54

    Article  PubMed  PubMed Central  Google Scholar 

  • MĂĽller-Ott K, Erdel F, Matveeva A et al (2014) Specificity, propagation, and memory of pericentric heterochromatin. Mol Syst Biol 10:746

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64

    Article  CAS  PubMed  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD et al (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K (2001) Disseminating the genome: joining, resolving, and separating sister chromatids during mitosis and meiosis. Annu Rev Genet 35:673–745

    Article  PubMed  CAS  Google Scholar 

  • Naughton C, Avlonitis N, Corless S et al (2013) Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures. Nat Struct Mol Biol 20:387–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nazarov LI, Tamm MV, Avetisov VA, Nechaev SK (2015) A statistical model of intra-chromosome contact maps. Soft Matter 11:1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Olarte-Plata JD, Haddad N, Vaillant C, Jost D (2016) The folding landscape of the epigenome. Phys Biol 13:026001

    Article  PubMed  CAS  Google Scholar 

  • Oldfield CJ, Dunker AK (2014) Intrinsically disordered proteins and intrinsically disordered protein regions. Annu Rev Biochem 83:553–584

    Article  PubMed  CAS  Google Scholar 

  • Papantonis A, Cook PR (2011) Fixing the model for transcription: the DNA moves, not the polymerase. Transcription 2:41–44

    Article  PubMed  Google Scholar 

  • Phair RD, Misteli T (2000) High mobility of proteins in the mammalian cell nucleus. Nature 404:604–609

    Article  PubMed  CAS  Google Scholar 

  • Phillip Y, Schreiber G (2013) Formation of protein complexes in crowded environments – from in vitro to in vivo. FEBS Lett 587:1046–1052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ptashne M, Gann A (2002) Genes & signals. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Racko D, Benedetti F, Dorier J, Stasiak A (2017) Transcription-induced supercoiling as the driving force of chromatin loop extrusion during formation of TADs in interphase chromosomes. Nucleic Acids Res 46:1648–1660

    Google Scholar 

  • Ramakrishnan V (1997) Histone structure and the organization of the nucleosome. Annu Rev Biophys Biomol Struct 26:83–112

    Article  PubMed  CAS  Google Scholar 

  • Reddy KL, Zullo JM, Bertolino E, Singh H (2008) Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature 452:243–247

    Article  PubMed  CAS  Google Scholar 

  • Rohlf T, Steiner L, Przybilla J et al (2012) Modeling the dynamic epigenome: from histone modifications towards self-organizing chromatin. Epigenomics 4:205–219

    Article  PubMed  CAS  Google Scholar 

  • Rosanova A, Colliva A, Osella M, Caselle M (2017) Modelling the evolution of transcription factor binding preferences in complex eukaryotes. Sci Rep 7:7596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanborn AL, Rao SSP, Huang S-C et al (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A 112:E6456–E6465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmidt HG, Sewitz S, Andrews SS, Lipkow K (2014) An integrated model of transcription factor diffusion shows the importance of intersegmental transfer and quaternary protein structure for target site finding. PLoS One 9:e108575

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmitt AD, Hu M, Jung I et al (2016a) A Compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep 17:2042–2059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schmitt AD, Hu M, Ren B (2016b) Genome-wide mapping and analysis of chromosome architecture. Nat Rev Mol Cell Biol 17:743–755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • SchĂĽbeler D (2015) Function and information content of DNA methylation. Nature 517:321–326

    Article  CAS  PubMed  Google Scholar 

  • Sedighi M, Sengupta AM (2007) Epigenetic chromatin silencing: bistability and front propagation. Phys Biol 4:246–255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sewitz S, Lipkow K (2016) Systems biology approaches for understanding genome architecture. Methods Mol Biol 1431:109–126

    Article  PubMed  CAS  Google Scholar 

  • Sewitz SA, Fahmi Z, Aljebali L et al (2017a) Heterogeneous chromatin mobility derived from chromatin states is a determinant of genome organisation in S. cerevisiae. bioRxiv:106344. https://doi.org/10.1101/106344

  • Sewitz S, Fahmi Z, Lipkow K (2017b) Higher order assembly: folding the chromosome. Curr Opin Struct Biol 42:162–168

    Article  PubMed  CAS  Google Scholar 

  • Shankaranarayana GD, Motamedi MR, Moazed D, Grewal SIS (2003) Sir2 regulates histone H3 lysine 9 methylation and heterochromatin assembly in fission yeast. Curr Biol 13:1240–1246

    Article  PubMed  CAS  Google Scholar 

  • Shukron O, Holcman D (2017) Transient chromatin properties revealed by polymer models and stochastic simulations constructed from chromosomal capture data. PLoS Comput Biol 13:e1005469

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smolle M, Workman JL (2013) Transcription-associated histone modifications and cryptic transcription. Biochim Biophys Acta 1829:84–97

    Article  PubMed  CAS  Google Scholar 

  • Smrek J, Kremer K (2017) Small activity differences drive phase separation in active-passive polymer mixtures. Phys Rev Lett 118:098002

    Article  PubMed  Google Scholar 

  • Tabaka M, Kalwarczyk T, HoĹ‚yst R (2014) Quantitative influence of macromolecular crowding on gene regulation kinetics. Nucleic Acids Res 42:727–738

    Article  PubMed  CAS  Google Scholar 

  • Tark-Dame M, van Driel R, Heermann DW (2011) Chromatin folding – from biology to polymer models and back. J Cell Sci 124:839–845

    Article  PubMed  CAS  Google Scholar 

  • Tark-Dame M, Jerabek H, Manders EMM et al (2014) Depletion of the chromatin looping proteins CTCF and cohesin causes chromatin compaction: insight into chromatin folding by polymer modelling. PLoS Comput Biol 10:e1003877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tee W-W, Shen SS, Oksuz O et al (2014) Erk1/2 activity promotes chromatin features and RNAPII phosphorylation at developmental promoters in mouse ESCs. Cell 156:678–690

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiana G, Amitai A, Pollex T et al (2016) Structural fluctuations of the chromatin fiber within topologically associating domains. Biophys J 110:1234–1245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Torella R, Li J, Kinrade E et al (2014) A combination of computational and experimental approaches identifies DNA sequence constraints associated with target site binding specificity of the transcription factor CSL. Nucleic Acids Res 42:10550–10563

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ulianov SV, Khrameeva EE, Gavrilov AA et al (2016) Active chromatin and transcription play a key role in chromosome partitioning into topologically associating domains. Genome Res 26:70–84

    Article  PubMed  PubMed Central  Google Scholar 

  • UuskĂĽla-Reimand L, Hou H, Samavarchi-Tehrani P et al (2016) Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol 17:182

    PubMed  PubMed Central  Google Scholar 

  • van Holde KE (1989) Chromatin. Springer series in molecular and cell biology. Springer, New York

    Google Scholar 

  • Vazquez J, Belmont AS, Sedat JW (2001) Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Curr Biol 11:1227–1239

    Article  PubMed  CAS  Google Scholar 

  • West AG, Gaszner M, Felsenfeld G (2002) Insulators: many functions, many mechanisms. Genes Dev 16:271–288

    Article  PubMed  CAS  Google Scholar 

  • Wollman AJ, Shashkova S, Hedlund EG et al (2017) Transcription factor clusters regulate genes in eukaryotic cells. eLIFE 6:e27451

    Google Scholar 

  • Wu HY, Shyy SH, Wang JC, Liu LF (1988) Transcription generates positively and negatively supercoiled domains in the template. Cell 53:433–440

    Article  PubMed  CAS  Google Scholar 

  • Zabet NR, Adryan B (2012a) GRiP: a computational tool to simulate transcription factor binding in prokaryotes. Bioinformatics 28:1287–1289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zabet NR, Adryan B (2012b) A comprehensive computational model of facilitated diffusion in prokaryotes. Bioinformatics 28:1517–1524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zabet NR, Adryan B (2013) The effects of transcription factor competition on gene regulation. Front Genet 4:197

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zimmer C, Fabre E (2011) Principles of chromosomal organization: lessons from yeast. J Cell Biol 192:723–733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuin J, Dixon JR, van der Reijden MIJA et al (2014) Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci U S A 111:996–1001

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Lipkow .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fahmi, Z., Sewitz, S.A., Lipkow, K. (2018). Systems Biology of Genome Structure and Dynamics. In: Rajewsky, N., Jurga, S., Barciszewski, J. (eds) Systems Biology. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-92967-5_1

Download citation

Publish with us

Policies and ethics